Re: Kripke semantics

2001-04-25 Thread Marchal

George Levy wrote:

So far so good 

:-)


sorry with the delay 

*I*'m sorry for the delay, and the forthcoming delays (!).



let's move ahead... 

OK.

just a 
question:

I will first answer your question and then proceed.


A realist world is one with access to at least one terminal
world.   ww1 --|


You mean a realist frame, I guess.

A frame is a set of world. Therefore, I would expect a frame to be in a 
different
classification level than a world. Hence a connection from a frame to 
world may
not be appropriate. How about talking about connection from any world 
within a
frame to a world. So the above statement would become:

Any world belonging to a realist frame is a world with access to at least 
one
terminal world.

That is correct. 


Let us sum up.

A Kripke frame (W, R) is just a set W with a binary relation R.
A Kripke model (W,R,V) is a Kripke frame with a function V which 
attribute a truth value (among {TRUE FALSE}) to each atomic 
proposition at each world.

The frame (W,R) respects A iff A is true in all worlds of 
all models based on the frame (W,R)

iff is put for *if and only if*


Another way to put that: is to first define a notion of satisfaction
by a model:

(W,R,V) satisfies A iff A is true in all worlds of W.

The meaning of A is true in a world is of course given by V.

It is important to see clearly the three semantical level in
Kripke semantics:

   Truth of A in a world (given by V and Kripke semantics)
   Satisfaction of A in a model (truth in all worlds of the model)
   Respect by a frame (satisfaction by all models based on the
 frame).



And now the results are ... but I realize I have forget to give 
you the name of the formula. These names are more or less standart 
and historical. Although Naming Theory is a speciality in modal
logic, the names are bad and unpedagogical! (Now a worth pedagogy
would consist in changing the names, because then you will be lost
in the literature!).


K (for Kripke) is the standart name of [](p-q) - []p-[]q
T is the name for []p - p
4 is the name of []p - [][]p   (4th formula in Lewis System)
5 is the name of p - []p   (5th formula in Lewis System)
D is the name of []p - p (D for deontic)
B is the name of p - []p (B for Brouwer, but Brouwer has almost 
   nothing to do with it. 
   You recognize LASE !)
C is the name p - -[]p(C for consistency or consciousness!).
(You recognize FTMP !)


Other important formula will appear in the drama which will evolved):

L is the name of []([]p - p) - []p  (L is for Loeb).

In some sense L is the most important formula we will meet. You should
try to show that all the frames respect L-C (This *is* obvious once
you are familiar with the definitions, and basic classical propositional
calculus, you can use the fact that p-q is equivalent with -q - -p).

Grz, which will play only some indirect role. That's a good thing
because Grz is not so obvious:

Grz is the name of []([](p-[]p)-p)-p(Grz is for Grzegorczyk,
   an important polish mathematician).

And we have as results (including the exercices!):


  Any frame (W,R) respects K
  A frame (W,R) respects T iff  R is reflexive
  A frame (W,R) respects 4 iff R is transitive
  A frame (W,R) respects 5 iff R is euclidian
(where R is Euclidian means that if xRy and xRz then yRz,
 for x, y z in W).
  A frame (W,R) respects D iff (W,R) is ideal
  A frame (W,R) respects C iff (W,R) is realist.

We will talk on the semantics of L and Grz later.


Remark: 1) A frequent beginner error is to believe that if
T, for exemple, is true in all worlds of a model, then the model
is reflexive. This is false, and you should be able to draw a
little non reflexive model M in which T is true in all worlds.
What the theorem says is only that if T is true in all worlds of
a frame, whatever V is; that is whatever the model is, then the
frame must be reflexive.  You should see that if you change the
truth value (V) in your little model you can falsify T at some
world.
  2) Don't confuse the formula T and the truth value TRUE.
In most book TRUE is written T.

Well. Now, with these result the right (semantical) brain can
be happy. But remember that logician want theories.

Here are some important theories, and because they play some role,
and we will meet them again it will be useful I tell you their
(still rather stupid) name.

Recall that a (formal) theory is the giving of axioms (formula)
and inference rule (to derive syntactly new formulas called
theorems).

The rules of inference are MP and NEC. This gives the so-called
normal modal logics. Unfortunately we will meet some non normal
modal logics too.

We make the abus de langage by accepting that some systems
have the same name that its principal formula.
Here are the 

Re: Combined response Re: Computing Randomness

2001-04-25 Thread Hal Ruhl

Dear Bruno:

At , you wrote:
Hal Ruhl wrote:

 The assumption leads to a contradiction when String N exceeds the
 complexity allowed by Chaitin.  More information must be added to the
 cascade for it to continue.

Why ? Only if your FAS produces as output just the string N
and then stop, then there would indeed be a contradiction.

That seems to be mostly what I said.  Each cascade is a self contained 
FAS.  Each is a one trick pony.  Each trick is a universe. Each step in the 
trick is a state of that universe.  It is a very very big pony show.  The 
result is universal computation including random history universes.

But cascades of this sort suffer the contradiction.  The FAS has to grow - 
the cascade gets an injection of complexity .

Now identify each cascade current step as actually a particular isomorphism 
linked to a particular pattern in an ocean of patterns - my 
Superverse.  Each new step is a jump to a new pattern.

The cascade steps are shifts of the link to another pattern.

Hal