Re: [Fis] Probability Amplitudes in Macroscopic Processes

2014-01-22 Thread Lars-Göran Johansson
Let me clarify one point: by saying that probability amplitudes represent real 
physical features I reject the instrumentalist idea that they are mere 
calculational devices. But of course, the probability amplitude is no 
observable. But there is no need to claim that only observables have any 
physical significance.
Robert Chen has, in a couple of papers argued that the square of real part of 
the wave function could be interpreted as the system's kinetic energy, whereas 
the square of the imaginary part represents the potential energy of the system. 
It is as far as I can see a possible and reasonable interpretation.
Lars-Göran


22 jan 2014 kl. 15:14 skrev Joseph Brenner 
mailto:joe.bren...@bluewin.ch>>:

Dear Lars-Göran, Andrei and Hans,

As you (I hope) have seen, I am trying to see how the evolution of macroscopic 
processes can be described in terms of changing probabilities, and I am 
encouraged to believe this is possible. If you allow the extension from QM, all 
of the following would seem to allow this
(I am not concerned about whether QM itself becomes more or less complex):

1. Andrei confirms that the probability (in LIR, degree of potentiality or 
actuality) of a phenomenon can have a direction.
2. Lars-Göran says that probability amplitudes can represent real physical 
features.
3. Even though /a contrario/, Hans wrote:

In order to make contact with real, measurable quantities, it (the probability 
amplitude) must be multiplied by its complex conjugate. This recipe is called 
the Born rule, and it is an ad hoc addition to the quantum theory. It lacks any 
motivation except that it works.
In my Logic in Reality, since there is a reciprocal relation between actuality 
and potentiality, each should be the complex conjugate of the other. I have no 
problem in the two summing to 1 if the values of 0 or 1 are excluded for either 
of them. This non-quantum aspect of reality could provide the missing 
motivation for the recipe in quantum theory ;-)

I am certainly looking for a measurable (or estimatable) quantity of the 
actuality and potentiality of interactive processes that is not a standard 
probability of outcomes, but of changing macroscopic states. This is of course 
an 'underdeveloped' concept, but I am encouraged to believe that this idea of 
another set of "very special probabilities" is neither totally wrong nor 
totally trivial.

Many thanks,

Joseph

- Original Message -
From: Lars-Göran Johansson
To: fis@listas.unizar.es
Sent: Wednesday, January 22, 2014 12:45 PM
Subject: Re: [Fis] Probability Amplitudes

 Dear Andrei, Hans and all
I agree with Andrei. And why make quantum theory more complex than it is? One 
may use all  kinds of mathematical tools in a scientific theory, and the more 
these tools simplify calculations the better. I see no reason to avoid using 
amplitudes or  matrices in quantum theory. Using a mathematical concept for 
making calculations doesn't entail that I accept that that concept represent a 
physical property.

To Hans: Where exactly did Einstein wrote that one should avoid unmeasurable 
concepts in the description of Nature? I can't remember having read that.

The issue is how we should interpret quantum theory, in particular the wave 
function, i.e., probability amplitudes; are they just mathematical tools, or do 
 they describe real physical features of quantum systems? I believe the latter 
alternative is true and so did Schrödinger. But there are formidable 
difficulties to give a realistic interpretation of wave functions, and 
Schrödinger didn't succeed. But I think the difficulties can be overcome and I 
have published my views about these things (Lars-Göran Johansson: Interpreting 
Quantum Mechanics. A realist view in Schrödinger's vein, Ashgate, Aldershot 
2007).
Lars-Göran

22 jan 2014 kl. 10:59 skrev Andrei Khrennikov 
mailto:andrei.khrenni...@lnu.se>>:

  Dear Hans,

I would like just to point that 99,99% of people working
in quantum theory would say that the complex amplitude of
quantum probability is the main its intrinsic property, so
if you try to exclude amplitudes from the model
you can in principle do this and this is well known
long ago in so called quantum tomographic approach of Vladimir
Manko, but in this way quantum theory loses its simplicity and
clarity, yours, andrei

Andrei Khrennikov, Professor of Applied Mathematics,
International Center for Mathematical Modeling
in Physics, Engineering, Economics, and Cognitive Science
Linnaeus University, Växjö-Kalmar, Sweden

From: fis-boun...@listas.unizar.es 
[fis-boun...@listas.unizar.es] on behalf 
of Hans von Baeyer [henrikrit...@gmail.com]
Sent: Wednesday, January 22, 2014 12:21 AM
To: fis@listas.unizar.es
Subject: [Fis] Probabil

[Fis] Probability Amplitudes in Macroscopic Processes

2014-01-22 Thread Joseph Brenner
Dear Lars-Göran, Andrei and Hans,

As you (I hope) have seen, I am trying to see how the evolution of macroscopic 
processes can be described in terms of changing probabilities, and I am 
encouraged to believe this is possible. If you allow the extension from QM, all 
of the following would seem to allow this 
(I am not concerned about whether QM itself becomes more or less complex):

1. Andrei confirms that the probability (in LIR, degree of potentiality or 
actuality) of a phenomenon can have a direction.
2. Lars-Göran says that probability amplitudes can represent real physical 
features. 
3. Even though /a contrario/, Hans wrote:

In order to make contact with real, measurable quantities, it (the probability 
amplitude) must be multiplied by its complex conjugate. This recipe is called 
the Born rule, and it is an ad hoc addition to the quantum theory. It lacks any 
motivation except that it works.

In my Logic in Reality, since there is a reciprocal relation between actuality 
and potentiality, each should be the complex conjugate of the other. I have no 
problem in the two summing to 1 if the values of 0 or 1 are excluded for either 
of them. This non-quantum aspect of reality could provide the missing 
motivation for the recipe in quantum theory ;-) 

I am certainly looking for a measurable (or estimatable) quantity of the 
actuality and potentiality of interactive processes that is not a standard 
probability of outcomes, but of changing macroscopic states. This is of course 
an 'underdeveloped' concept, but I am encouraged to believe that this idea of 
another set of "very special probabilities" is neither totally wrong nor 
totally trivial. 

Many thanks,

Joseph

- Original Message - 
From: Lars-Göran Johansson 
To: fis@listas.unizar.es 
Sent: Wednesday, January 22, 2014 12:45 PM
Subject: Re: [Fis] Probability Amplitudes


 Dear Andrei, Hans and all 
I agree with Andrei. And why make quantum theory more complex than it is? One 
may use all  kinds of mathematical tools in a scientific theory, and the more 
these tools simplify calculations the better. I see no reason to avoid using 
amplitudes or  matrices in quantum theory. Using a mathematical concept for 
making calculations doesn't entail that I accept that that concept represent a 
physical property. 


To Hans: Where exactly did Einstein wrote that one should avoid unmeasurable 
concepts in the description of Nature? I can't remember having read that.


The issue is how we should interpret quantum theory, in particular the wave 
function, i.e., probability amplitudes; are they just mathematical tools, or do 
they describe real physical features of quantum systems? I believe the latter 
alternative is true and so did Schrödinger. But there are formidable 
difficulties to give a realistic interpretation of wave functions, and 
Schrödinger didn't succeed. But I think the difficulties can be overcome and I 
have published my views about these things (Lars-Göran Johansson: Interpreting 
Quantum Mechanics. A realist view in Schrödinger's vein, Ashgate, Aldershot 
2007).
Lars-Göran


22 jan 2014 kl. 10:59 skrev Andrei Khrennikov :


Dear Hans,

  I would like just to point that 99,99% of people working 
  in quantum theory would say that the complex amplitude of 
  quantum probability is the main its intrinsic property, so 
  if you try to exclude amplitudes from the model
  you can in principle do this and this is well known 
  long ago in so called quantum tomographic approach of Vladimir 
  Manko, but in this way quantum theory loses its simplicity and 
  clarity, yours, andrei

  Andrei Khrennikov, Professor of Applied Mathematics,
  International Center for Mathematical Modeling
  in Physics, Engineering, Economics, and Cognitive Science
  Linnaeus University, Växjö-Kalmar, Sweden
  
  From: fis-boun...@listas.unizar.es [fis-boun...@listas.unizar.es] on behalf 
of Hans von Baeyer [henrikrit...@gmail.com]
  Sent: Wednesday, January 22, 2014 12:21 AM
  To: fis@listas.unizar.es
  Subject: [Fis] Probability Amplitudes

  Dear Dino and friends, thanks for bringing up the issue of probability 
amplitudes.  Since they are technical tools of physics, and since I didn't want 
to go too far afield, I did not mention them in my lecture.  The closest I came 
was the wavefunction, which, indeed, is a probability amplitude.  In order to 
make contact with real, measurable quantities, it must be multiplied by its 
complex conjugate. This recipe is called the Born rule, and it is an ad hoc 
addition to the quantum theory. It lacks any motivation except that it works.

  In keeping with Einstein's advice (which he himself often flouted) to try to 
keep unmeasurable concepts out of our description of nature, physicists have 
realized long ago that it must be possible to recast quantum mechanics entirely 
in terms of probabilities, not even mentioning probability amplitudes or 
wavefunctions. The question