For some work I'm doing, I need to apply PCA to data containing missing values. So I dug up some old code that I had around, which implements Stock and Watson's EM algorithm (detailed in the 2002 JBES article).

I'm attaching a script with the function and an example if anyone's interested.

Of course, it'd be nice to make this procedure more readily available to gretl users. I see four (not mutually exclusive) ways of doing so:

1) modify our existing "pca" command to handle missing values;
2) modify our existing "princomp" function to handle missing values;
3) create a small self-contained function package;
4) integrate the code into the existing "staticfactor" function package.

Which one do you this is best?

-------------------------------------------------------
  Riccardo (Jack) Lucchetti
  Dipartimento di Scienze Economiche e Sociali (DiSES)

  Università Politecnica delle Marche
  (formerly known as Università di Ancona)

  r.lucche...@univpm.it
  http://www2.econ.univpm.it/servizi/hpp/lucchetti
-------------------------------------------------------

Attachment: pca_with_nas.inp
Description: application/gretlscript

_______________________________________________
Gretl-devel mailing list -- gretl-devel@gretlml.univpm.it
To unsubscribe send an email to gretl-devel-le...@gretlml.univpm.it
Website: 
https://gretlml.univpm.it/postorius/lists/gretl-devel.gretlml.univpm.it/

Reply via email to