Re: MJD and leap seconds

2006-01-10 Thread Peter Bunclark
On Tue, 10 Jan 2006, Tom Van Baak wrote:
 have no leap seconds. Astronomers appear to avoid
 using MJD altogether.

Good grief.  MJD is used widely in astronomy, for example in variablility
studies where you want a real number to represent time rather than deal
with the complications of parsing a date. It tends to be written into the
FITS header of practically every data file observed.

Pete.


Re: MJD and leap seconds

2006-01-10 Thread Poul-Henning Kamp
In message [EMAIL PROTECTED], Peter Bunclark writes:
On Tue, 10 Jan 2006, Tom Van Baak wrote:
 have no leap seconds. Astronomers appear to avoid
 using MJD altogether.

Good grief.  MJD is used widely in astronomy, for example in variablility
studies where you want a real number to represent time rather than deal
with the complications of parsing a date. It tends to be written into the
FITS header of practically every data file observed.

So how do you deal with fractional days in that format ?

--
Poul-Henning Kamp   | UNIX since Zilog Zeus 3.20
[EMAIL PROTECTED] | TCP/IP since RFC 956
FreeBSD committer   | BSD since 4.3-tahoe
Never attribute to malice what can adequately be explained by incompetence.


Re: MJD and leap seconds

2006-01-10 Thread Peter Bunclark
On Tue, 10 Jan 2006, Poul-Henning Kamp wrote:

 In message [EMAIL PROTECTED], Peter Bunclark writes:
 On Tue, 10 Jan 2006, Tom Van Baak wrote:
  have no leap seconds. Astronomers appear to avoid
  using MJD altogether.
 
 Good grief.  MJD is used widely in astronomy, for example in variablility
 studies where you want a real number to represent time rather than deal
 with the complications of parsing a date. It tends to be written into the
 FITS header of practically every data file observed.

 So how do you deal with fractional days in that format ?

with decimals.

Pete.


Re: MJD and leap seconds

2006-01-10 Thread Rob Seaman
On Jan 10, 2006, at 9:17 AM, Peter Bunclark wrote:On Tue, 10 Jan 2006, Poul-Henning Kamp wrote:In message [EMAIL PROTECTED], Peter Bunclark writes: Good grief.  MJD is used widely in astronomy, for example in variablility studies where you want a real number to represent time rather than deal with the complications of parsing a date.So how do you deal with fractional days in that format ? with decimals.I'm not one to shy away from irony (see!  just proved it again...), but I do think there is a real issue here.  Was interested to read the pages Tom pointed us to.  Both the IAU position and McCarthy's exposition of same are curiously silent about the issue of resolving ambiguities resulting from non-denumerable SI intervals and solar days.The IAU tells us:1. Julian day number (JDN)The Julian day number associated with the solar day is the number assigned to a day in a continuous count of days beginning with the Julian day number 0 assigned to the day starting at Greenwich mean noon on 1 January 4713 BC, Julian proleptic calendar -4712.2. Julian Date (JD)The Julian Date (JD) of any instant is the Julian day number for the preceding noon plus the fraction of the day since that instant. A Julian Date begins at 12h 0m 0s and is composed of 86400 seconds. To determine time intervals in a uniform time system it is necessary to express the JD in a uniform time scale. For that purpose it is recommended that JD be specified as SI seconds in Terrestrial Time (TT) where the length of day is 86,400 SI seconds.Which is to say that day number is (always) a solar unit and fraction of day (sometimes) an SI unit.In "practical" terms, a JD(TT) _expression_ would simply be calculated by running a count of TT seconds since some epoch through the obvious conversion mill, but we're then returned to the central issue of reconciling such a JD(TT) with a JD(UT1).  A calculation would simply show a growing fractional difference between the two, of course.  At issue is the unit jump in JDN.  Which day is it?  This ambiguity only holds for a bit over a minute a "day" in the current epoch.  (UTC = TAI - 33s, TT = TAI + 32.184s) The ambiguity is growing.Perhaps the SI unit should have been called the "essen", rather than the "second", as Steve Allen has said.  But whatever it is called, it has a clear definition.  But what is the definition of a day?  Am convinced we need to reach a consensus on this before leaping (irony again) into any changes to the current rules of civil/business/international/legal/historical date and timekeeping.You'll note that I omitted "technical" and "scientific" from that list.  This is not now and has never been a discussion about resolving purely technical issues, although some of the implications strongly affect technical people.Rob

Re: MJD and leap seconds

2006-01-10 Thread Poul-Henning Kamp
In message [EMAIL PROTECTED], Rob Seaman writes:

 2. Julian Date (JD)

 [...] For that
 purpose it is recommended that JD be specified as SI seconds in
 Terrestrial Time (TT) where the length of day is 86,400 SI seconds.

Let me see if understood that right:  In order to avoid computing
problems and to get precise time, astronomers rely on a timescale
without leapseconds, because the Earths rotation is too unstable
a clock for their purposes.

And in N years, for some value of N, JD's will start at midnight
instead of noon in Greenwich.

Don't do like we do, do as we say...

Yes, the irony is rather notable.

--
Poul-Henning Kamp   | UNIX since Zilog Zeus 3.20
[EMAIL PROTECTED] | TCP/IP since RFC 956
FreeBSD committer   | BSD since 4.3-tahoe
Never attribute to malice what can adequately be explained by incompetence.