Re: [PATCH v4 1/2] KVM: arm64: Move CMOs from user_mem_abort to the fault handlers

2021-04-09 Thread Marc Zyngier
On Fri, 09 Apr 2021 09:08:11 +0100,
Quentin Perret  wrote:
> 
> Hi Yanan,
> 
> On Friday 09 Apr 2021 at 11:36:51 (+0800), Yanan Wang wrote:
> > diff --git a/arch/arm64/kvm/hyp/pgtable.c b/arch/arm64/kvm/hyp/pgtable.c
> > +static void stage2_invalidate_icache(void *addr, u64 size)
> > +{
> > +   if (icache_is_aliasing()) {
> > +   /* Flush any kind of VIPT icache */
> > +   __flush_icache_all();
> > +   } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
> > +   /* PIPT or VPIPT at EL2 */
> > +   invalidate_icache_range((unsigned long)addr,
> > +   (unsigned long)addr + size);
> > +   }
> > +}
> > +
> 
> I would recommend to try and rebase this patch on kvmarm/next because
> we've made a few changes in pgtable.c recently. It is now linked into
> the EL2 NVHE code which means there are constraints on what can be used
> from there -- you'll need a bit of extra work to make some of these
> functions available to EL2.

That's an interesting point.

I wonder whether we are missing something on the i-side for VPITP +
host stage-2 due to switching HCR_EL2.VM. We haven't changed the VMID
(still 0), but I can't bring myself to be sure it doesn't affect the
icache in this case...

M.

-- 
Without deviation from the norm, progress is not possible.


Re: [PATCH v4 1/2] KVM: arm64: Move CMOs from user_mem_abort to the fault handlers

2021-04-09 Thread wangyanan (Y)

Hi Quentin,

On 2021/4/9 16:08, Quentin Perret wrote:

Hi Yanan,

On Friday 09 Apr 2021 at 11:36:51 (+0800), Yanan Wang wrote:

diff --git a/arch/arm64/kvm/hyp/pgtable.c b/arch/arm64/kvm/hyp/pgtable.c
+static void stage2_invalidate_icache(void *addr, u64 size)
+{
+   if (icache_is_aliasing()) {
+   /* Flush any kind of VIPT icache */
+   __flush_icache_all();
+   } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
+   /* PIPT or VPIPT at EL2 */
+   invalidate_icache_range((unsigned long)addr,
+   (unsigned long)addr + size);
+   }
+}
+

I would recommend to try and rebase this patch on kvmarm/next because
we've made a few changes in pgtable.c recently. It is now linked into
the EL2 NVHE code which means there are constraints on what can be used
from there -- you'll need a bit of extra work to make some of these
functions available to EL2.

I see, thanks for reminding me this.
I will work on kvmarm/next and send a new version later.

Thanks,
Yanan


Thanks,
Quentin
.


Re: [PATCH v4 1/2] KVM: arm64: Move CMOs from user_mem_abort to the fault handlers

2021-04-09 Thread Quentin Perret
Hi Yanan,

On Friday 09 Apr 2021 at 11:36:51 (+0800), Yanan Wang wrote:
> diff --git a/arch/arm64/kvm/hyp/pgtable.c b/arch/arm64/kvm/hyp/pgtable.c
> +static void stage2_invalidate_icache(void *addr, u64 size)
> +{
> + if (icache_is_aliasing()) {
> + /* Flush any kind of VIPT icache */
> + __flush_icache_all();
> + } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
> + /* PIPT or VPIPT at EL2 */
> + invalidate_icache_range((unsigned long)addr,
> + (unsigned long)addr + size);
> + }
> +}
> +

I would recommend to try and rebase this patch on kvmarm/next because
we've made a few changes in pgtable.c recently. It is now linked into
the EL2 NVHE code which means there are constraints on what can be used
from there -- you'll need a bit of extra work to make some of these
functions available to EL2.

Thanks,
Quentin


[PATCH v4 1/2] KVM: arm64: Move CMOs from user_mem_abort to the fault handlers

2021-04-08 Thread Yanan Wang
We currently uniformly permorm CMOs of D-cache and I-cache in function
user_mem_abort before calling the fault handlers. If we get concurrent
guest faults(e.g. translation faults, permission faults) or some really
unnecessary guest faults caused by BBM, CMOs for the first vcpu are
necessary while the others later are not.

By moving CMOs to the fault handlers, we can easily identify conditions
where they are really needed and avoid the unnecessary ones. As it's a
time consuming process to perform CMOs especially when flushing a block
range, so this solution reduces much load of kvm and improve efficiency
of the page table code.

So let's move both clean of D-cache and invalidation of I-cache to the
map path and move only invalidation of I-cache to the permission path.
Since the original APIs for CMOs in mmu.c are only called in function
user_mem_abort, we now also move them to pgtable.c.

Signed-off-by: Yanan Wang 
---
 arch/arm64/include/asm/kvm_mmu.h | 31 ---
 arch/arm64/kvm/hyp/pgtable.c | 68 +---
 arch/arm64/kvm/mmu.c | 23 ++-
 3 files changed, 57 insertions(+), 65 deletions(-)

diff --git a/arch/arm64/include/asm/kvm_mmu.h b/arch/arm64/include/asm/kvm_mmu.h
index 90873851f677..c31f88306d4e 100644
--- a/arch/arm64/include/asm/kvm_mmu.h
+++ b/arch/arm64/include/asm/kvm_mmu.h
@@ -177,37 +177,6 @@ static inline bool vcpu_has_cache_enabled(struct kvm_vcpu 
*vcpu)
return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
 }
 
-static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
-{
-   void *va = page_address(pfn_to_page(pfn));
-
-   /*
-* With FWB, we ensure that the guest always accesses memory using
-* cacheable attributes, and we don't have to clean to PoC when
-* faulting in pages. Furthermore, FWB implies IDC, so cleaning to
-* PoU is not required either in this case.
-*/
-   if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
-   return;
-
-   kvm_flush_dcache_to_poc(va, size);
-}
-
-static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
- unsigned long size)
-{
-   if (icache_is_aliasing()) {
-   /* any kind of VIPT cache */
-   __flush_icache_all();
-   } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
-   /* PIPT or VPIPT at EL2 (see comment in 
__kvm_tlb_flush_vmid_ipa) */
-   void *va = page_address(pfn_to_page(pfn));
-
-   invalidate_icache_range((unsigned long)va,
-   (unsigned long)va + size);
-   }
-}
-
 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
 
diff --git a/arch/arm64/kvm/hyp/pgtable.c b/arch/arm64/kvm/hyp/pgtable.c
index 4d177ce1d536..0e811c86fd06 100644
--- a/arch/arm64/kvm/hyp/pgtable.c
+++ b/arch/arm64/kvm/hyp/pgtable.c
@@ -464,6 +464,43 @@ static int stage2_map_set_prot_attr(enum kvm_pgtable_prot 
prot,
return 0;
 }
 
+static bool stage2_pte_cacheable(kvm_pte_t pte)
+{
+   u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
+   return memattr == PAGE_S2_MEMATTR(NORMAL);
+}
+
+static bool stage2_pte_executable(kvm_pte_t pte)
+{
+   return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
+}
+
+static void stage2_flush_dcache(void *addr, u64 size)
+{
+   /*
+* With FWB, we ensure that the guest always accesses memory using
+* cacheable attributes, and we don't have to clean to PoC when
+* faulting in pages. Furthermore, FWB implies IDC, so cleaning to
+* PoU is not required either in this case.
+*/
+   if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
+   return;
+
+   __flush_dcache_area(addr, size);
+}
+
+static void stage2_invalidate_icache(void *addr, u64 size)
+{
+   if (icache_is_aliasing()) {
+   /* Flush any kind of VIPT icache */
+   __flush_icache_all();
+   } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
+   /* PIPT or VPIPT at EL2 */
+   invalidate_icache_range((unsigned long)addr,
+   (unsigned long)addr + size);
+   }
+}
+
 static int stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level,
  kvm_pte_t *ptep,
  struct stage2_map_data *data)
@@ -495,6 +532,13 @@ static int stage2_map_walker_try_leaf(u64 addr, u64 end, 
u32 level,
put_page(page);
}
 
+   /* Perform CMOs before installation of the new PTE */
+   if (stage2_pte_cacheable(new))
+   stage2_flush_dcache(__va(phys), granule);
+
+   if (stage2_pte_executable(new))
+   stage2_invalidate_icache(__va(phys), granule);
+
smp_store_release(ptep, new);
get_page(page);
data->phys +=