Hi Laurent,

Thanks for your reworking and improvements here.

The documentation additions look good.

Only one grammar fixup found inline in the struct fdp1_ctx which isn't
critical (and could have been from my original submission), so don't
worry about it unless there ends up being another respin.
--
Regards

Kieran

On 24/10/16 10:03, Laurent Pinchart wrote:
> From: Kieran Bingham <kieran+rene...@bingham.xyz>
> 
> The FDP1 driver performs advanced de-interlacing on a memory 2 memory
> based video stream, and supports conversion from YCbCr/YUV
> to RGB pixel formats
> 
> Signed-off-by: Kieran Bingham <kieran+rene...@bingham.xyz>
> Reviewed-by: Laurent Pinchart <laurent.pinch...@ideasonboard.com>
> Signed-off-by: Laurent Pinchart <laurent.pinchart+rene...@ideasonboard.com>
> ---
> Changes since v3:
> 
> - Squashed all driver changes together
> - Documented deinterlacing modes
> - Capitalized the 2D and 3D abbreviations
> ---
>  Documentation/media/v4l-drivers/index.rst     |    1 +
>  Documentation/media/v4l-drivers/rcar-fdp1.rst |   37 +
>  MAINTAINERS                                   |    9 +
>  drivers/media/platform/Kconfig                |   13 +
>  drivers/media/platform/Makefile               |    1 +
>  drivers/media/platform/rcar_fdp1.c            | 2446 
> +++++++++++++++++++++++++
>  6 files changed, 2507 insertions(+)
>  create mode 100644 Documentation/media/v4l-drivers/rcar-fdp1.rst
>  create mode 100644 drivers/media/platform/rcar_fdp1.c
> 
> diff --git a/Documentation/media/v4l-drivers/index.rst 
> b/Documentation/media/v4l-drivers/index.rst
> index acde3ed7860f..a606d1cdac13 100644
> --- a/Documentation/media/v4l-drivers/index.rst
> +++ b/Documentation/media/v4l-drivers/index.rst
> @@ -48,6 +48,7 @@ For more details see the file COPYING in the source 
> distribution of Linux.
>       pvrusb2
>       pxa_camera
>       radiotrack
> +     rcar-fdp1
>       saa7134
>       sh_mobile_ceu_camera
>       si470x
> diff --git a/Documentation/media/v4l-drivers/rcar-fdp1.rst 
> b/Documentation/media/v4l-drivers/rcar-fdp1.rst
> new file mode 100644
> index 000000000000..a59b1e8e3e9c
> --- /dev/null
> +++ b/Documentation/media/v4l-drivers/rcar-fdp1.rst
> @@ -0,0 +1,37 @@
> +Renesas R-Car Fine Display Processor (FDP1) Driver
> +==================================================
> +
> +The R-Car FDP1 driver implements driver-specific controls as follows.
> +
> +``V4L2_CID_DEINTERLACING_MODE (menu)``
> +    The video deinterlacing mode (such as Bob, Weave, ...). The R-Car FDP1
> +    driver implements the following modes.
> +
> +.. flat-table::
> +    :header-rows:  0
> +    :stub-columns: 0
> +    :widths:       1 4
> +
> +    * - ``"Progressive" (0)``
> +      - The input image video stream is progressive (not interlaced). No
> +        deinterlacing is performed. Apart from (optional) format and encoding
> +        conversion output frames are identical to the input frames.
> +    * - ``"Adaptive 2D/3D" (1)``
> +      - Motion adaptive version of 2D and 3D deinterlacing. Use 3D 
> deinterlacing
> +        in the presence of fast motion and 2D deinterlacing with diagonal
> +        interpolation otherwise.
> +    * - ``"Fixed 2D" (2)``
> +      - The current field is scaled vertically by averaging adjacent lines to
> +        recover missing lines. This method is also known as blending or Line
> +        Averaging (LAV).
> +    * - ``"Fixed 3D" (3)``
> +      - The previous and next fields are averaged to recover lines missing 
> from
> +        the current field. This method is also known as Field Averaging 
> (FAV).
> +    * - ``"Previous field" (4)``
> +      - The current field is weaved with the previous field, i.e. the 
> previous
> +        field is used to fill missing lines from the current field. This 
> method
> +        is also known as weave deinterlacing.
> +    * - ``"Next field" (5)``
> +      - The current field is weaved with the next field, i.e. the next field 
> is
> +        used to fill missing lines from the current field. This method is 
> also
> +        known as weave deinterlacing.

Doc's look good.

> diff --git a/MAINTAINERS b/MAINTAINERS
> index 1cd38a7e0064..a61bebacee45 100644
> --- a/MAINTAINERS
> +++ b/MAINTAINERS
> @@ -7712,6 +7712,15 @@ F:     
> Documentation/devicetree/bindings/media/renesas,fcp.txt
>  F:   drivers/media/platform/rcar-fcp.c
>  F:   include/media/rcar-fcp.h
>  
> +MEDIA DRIVERS FOR RENESAS - FDP1
> +M:   Kieran Bingham <kie...@bingham.xyz>
> +L:   linux-me...@vger.kernel.org
> +L:   linux-renesas-soc@vger.kernel.org
> +T:   git git://linuxtv.org/media_tree.git
> +S:   Supported
> +F:   Documentation/devicetree/bindings/media/renesas,fdp1.txt
> +F:   drivers/media/platform/rcar_fdp1.c
> +
>  MEDIA DRIVERS FOR RENESAS - VIN
>  M:   Niklas Söderlund <niklas.soderl...@ragnatech.se>
>  L:   linux-me...@vger.kernel.org
> diff --git a/drivers/media/platform/Kconfig b/drivers/media/platform/Kconfig
> index ce4a96fccc43..414b69e5333c 100644
> --- a/drivers/media/platform/Kconfig
> +++ b/drivers/media/platform/Kconfig
> @@ -290,6 +290,19 @@ config VIDEO_SH_VEU
>           Support for the Video Engine Unit (VEU) on SuperH and
>           SH-Mobile SoCs.
>  
> +config VIDEO_RENESAS_FDP1
> +     tristate "Renesas Fine Display Processor"
> +     depends on VIDEO_DEV && VIDEO_V4L2 && HAS_DMA
> +     depends on ARCH_SHMOBILE || COMPILE_TEST
> +     select VIDEOBUF2_DMA_CONTIG
> +     select V4L2_MEM2MEM_DEV
> +     ---help---
> +       This is a V4L2 driver for the Renesas Fine Display Processor
> +       providing colour space conversion, and de-interlacing features.
> +
> +       To compile this driver as a module, choose M here: the module
> +       will be called rcar_fdp1.
> +
>  config VIDEO_RENESAS_JPU
>       tristate "Renesas JPEG Processing Unit"
>       depends on VIDEO_DEV && VIDEO_V4L2 && HAS_DMA
> diff --git a/drivers/media/platform/Makefile b/drivers/media/platform/Makefile
> index 40b18d12726e..ad7a230904ce 100644
> --- a/drivers/media/platform/Makefile
> +++ b/drivers/media/platform/Makefile
> @@ -48,6 +48,7 @@ obj-$(CONFIG_VIDEO_SH_VOU)          += sh_vou.o
>  obj-$(CONFIG_SOC_CAMERA)             += soc_camera/
>  
>  obj-$(CONFIG_VIDEO_RENESAS_FCP)      += rcar-fcp.o
> +obj-$(CONFIG_VIDEO_RENESAS_FDP1)     += rcar_fdp1.o
>  obj-$(CONFIG_VIDEO_RENESAS_JPU)      += rcar_jpu.o
>  obj-$(CONFIG_VIDEO_RENESAS_VSP1)     += vsp1/
>  
> diff --git a/drivers/media/platform/rcar_fdp1.c 
> b/drivers/media/platform/rcar_fdp1.c
> new file mode 100644
> index 000000000000..58c600782773
> --- /dev/null
> +++ b/drivers/media/platform/rcar_fdp1.c
> @@ -0,0 +1,2446 @@
> +/*
> + * Renesas RCar Fine Display Processor
> + *
> + * Video format converter and frame deinterlacer device.
> + *
> + * Author: Kieran Bingham, <kie...@bingham.xyz>
> + * Copyright (c) 2016 Renesas Electronics Corporation.
> + *
> + * This code is developed and inspired from the vim2m, rcar_jpu,
> + * m2m-deinterlace, and vsp1 drivers.
> + *
> + * This program is free software; you can redistribute it and/or modify
> + * it under the terms of the GNU General Public License as published by the
> + * Free Software Foundation; either version 2 of the
> + * License, or (at your option) any later version
> + */
> +
> +#include <linux/clk.h>
> +#include <linux/delay.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/fs.h>
> +#include <linux/interrupt.h>
> +#include <linux/module.h>
> +#include <linux/of.h>
> +#include <linux/of_device.h>
> +#include <linux/platform_device.h>
> +#include <linux/pm_runtime.h>
> +#include <linux/sched.h>
> +#include <linux/slab.h>
> +#include <linux/timer.h>
> +#include <media/rcar-fcp.h>
> +#include <media/v4l2-ctrls.h>
> +#include <media/v4l2-device.h>
> +#include <media/v4l2-event.h>
> +#include <media/v4l2-ioctl.h>
> +#include <media/v4l2-mem2mem.h>
> +#include <media/videobuf2-dma-contig.h>
> +
> +static unsigned int debug;
> +module_param(debug, uint, 0644);
> +MODULE_PARM_DESC(debug, "activate debug info");
> +
> +/* Minimum and maximum frame width/height */
> +#define FDP1_MIN_W           80U
> +#define FDP1_MIN_H           80U
> +
> +#define FDP1_MAX_W           3840U
> +#define FDP1_MAX_H           2160U
> +
> +#define FDP1_MAX_PLANES              3U
> +#define FDP1_MAX_STRIDE              8190U
> +
> +/* Flags that indicate a format can be used for capture/output */
> +#define FDP1_CAPTURE         BIT(0)
> +#define FDP1_OUTPUT          BIT(1)
> +
> +#define DRIVER_NAME          "rcar_fdp1"
> +
> +/* Number of Job's to have available on the processing queue */
> +#define FDP1_NUMBER_JOBS 8
> +
> +#define dprintk(fdp1, fmt, arg...) \
> +     v4l2_dbg(1, debug, &fdp1->v4l2_dev, "%s: " fmt, __func__, ## arg)
> +
> +/*
> + * FDP1 registers and bits
> + */
> +
> +/* FDP1 start register - Imm */
> +#define FD1_CTL_CMD                  0x0000
> +#define FD1_CTL_CMD_STRCMD           BIT(0)
> +
> +/* Sync generator register - Imm */
> +#define FD1_CTL_SGCMD                        0x0004
> +#define FD1_CTL_SGCMD_SGEN           BIT(0)
> +
> +/* Register set end register - Imm */
> +#define FD1_CTL_REGEND                       0x0008
> +#define FD1_CTL_REGEND_REGEND                BIT(0)
> +
> +/* Channel activation register - Vupdt */
> +#define FD1_CTL_CHACT                        0x000c
> +#define FD1_CTL_CHACT_SMW            BIT(9)
> +#define FD1_CTL_CHACT_WR             BIT(8)
> +#define FD1_CTL_CHACT_SMR            BIT(3)
> +#define FD1_CTL_CHACT_RD2            BIT(2)
> +#define FD1_CTL_CHACT_RD1            BIT(1)
> +#define FD1_CTL_CHACT_RD0            BIT(0)
> +
> +/* Operation Mode Register - Vupdt */
> +#define FD1_CTL_OPMODE                       0x0010
> +#define FD1_CTL_OPMODE_PRG           BIT(4)
> +#define FD1_CTL_OPMODE_VIMD_INTERRUPT        (0 << 0)
> +#define FD1_CTL_OPMODE_VIMD_BESTEFFORT       (1 << 0)
> +#define FD1_CTL_OPMODE_VIMD_NOINTERRUPT      (2 << 0)
> +
> +#define FD1_CTL_VPERIOD                      0x0014
> +#define FD1_CTL_CLKCTRL                      0x0018
> +#define FD1_CTL_CLKCTRL_CSTP_N               BIT(0)
> +
> +/* Software reset register */
> +#define FD1_CTL_SRESET                       0x001c
> +#define FD1_CTL_SRESET_SRST          BIT(0)
> +
> +/* Control status register (V-update-status) */
> +#define FD1_CTL_STATUS                       0x0024
> +#define FD1_CTL_STATUS_VINT_CNT_MASK GENMASK(31, 16)
> +#define FD1_CTL_STATUS_VINT_CNT_SHIFT        16
> +#define FD1_CTL_STATUS_SGREGSET              BIT(10)
> +#define FD1_CTL_STATUS_SGVERR                BIT(9)
> +#define FD1_CTL_STATUS_SGFREND               BIT(8)
> +#define FD1_CTL_STATUS_BSY           BIT(0)
> +
> +#define FD1_CTL_VCYCLE_STAT          0x0028
> +
> +/* Interrupt enable register */
> +#define FD1_CTL_IRQENB                       0x0038
> +/* Interrupt status register */
> +#define FD1_CTL_IRQSTA                       0x003c
> +/* Interrupt control register */
> +#define FD1_CTL_IRQFSET                      0x0040
> +
> +/* Common IRQ Bit settings */
> +#define FD1_CTL_IRQ_VERE             BIT(16)
> +#define FD1_CTL_IRQ_VINTE            BIT(4)
> +#define FD1_CTL_IRQ_FREE             BIT(0)
> +#define FD1_CTL_IRQ_MASK             (FD1_CTL_IRQ_VERE | \
> +                                      FD1_CTL_IRQ_VINTE | \
> +                                      FD1_CTL_IRQ_FREE)
> +
> +/* RPF */
> +#define FD1_RPF_SIZE                 0x0060
> +#define FD1_RPF_SIZE_MASK            GENMASK(12, 0)
> +#define FD1_RPF_SIZE_H_SHIFT         16
> +#define FD1_RPF_SIZE_V_SHIFT         0
> +
> +#define FD1_RPF_FORMAT                       0x0064
> +#define FD1_RPF_FORMAT_CIPM          BIT(16)
> +#define FD1_RPF_FORMAT_RSPYCS                BIT(13)
> +#define FD1_RPF_FORMAT_RSPUVS                BIT(12)
> +#define FD1_RPF_FORMAT_CF            BIT(8)
> +
> +#define FD1_RPF_PSTRIDE                      0x0068
> +#define FD1_RPF_PSTRIDE_Y_SHIFT              16
> +#define FD1_RPF_PSTRIDE_C_SHIFT              0
> +
> +/* RPF0 Source Component Y Address register */
> +#define FD1_RPF0_ADDR_Y                      0x006c
> +
> +/* RPF1 Current Picture Registers */
> +#define FD1_RPF1_ADDR_Y                      0x0078
> +#define FD1_RPF1_ADDR_C0             0x007c
> +#define FD1_RPF1_ADDR_C1             0x0080
> +
> +/* RPF2 next picture register */
> +#define FD1_RPF2_ADDR_Y                      0x0084
> +
> +#define FD1_RPF_SMSK_ADDR            0x0090
> +#define FD1_RPF_SWAP                 0x0094
> +
> +/* WPF */
> +#define FD1_WPF_FORMAT                       0x00c0
> +#define FD1_WPF_FORMAT_PDV_SHIFT     24
> +#define FD1_WPF_FORMAT_FCNL          BIT(20)
> +#define FD1_WPF_FORMAT_WSPYCS                BIT(15)
> +#define FD1_WPF_FORMAT_WSPUVS                BIT(14)
> +#define FD1_WPF_FORMAT_WRTM_601_16   (0 << 9)
> +#define FD1_WPF_FORMAT_WRTM_601_0    (1 << 9)
> +#define FD1_WPF_FORMAT_WRTM_709_16   (2 << 9)
> +#define FD1_WPF_FORMAT_CSC           BIT(8)
> +
> +#define FD1_WPF_RNDCTL                       0x00c4
> +#define FD1_WPF_RNDCTL_CBRM          BIT(28)
> +#define FD1_WPF_RNDCTL_CLMD_NOCLIP   (0 << 12)
> +#define FD1_WPF_RNDCTL_CLMD_CLIP_16_235      (1 << 12)
> +#define FD1_WPF_RNDCTL_CLMD_CLIP_1_254       (2 << 12)
> +
> +#define FD1_WPF_PSTRIDE                      0x00c8
> +#define FD1_WPF_PSTRIDE_Y_SHIFT              16
> +#define FD1_WPF_PSTRIDE_C_SHIFT              0
> +
> +/* WPF Destination picture */
> +#define FD1_WPF_ADDR_Y                       0x00cc
> +#define FD1_WPF_ADDR_C0                      0x00d0
> +#define FD1_WPF_ADDR_C1                      0x00d4
> +#define FD1_WPF_SWAP                 0x00d8
> +#define FD1_WPF_SWAP_OSWAP_SHIFT     0
> +#define FD1_WPF_SWAP_SSWAP_SHIFT     4
> +
> +/* WPF/RPF Common */
> +#define FD1_RWPF_SWAP_BYTE           BIT(0)
> +#define FD1_RWPF_SWAP_WORD           BIT(1)
> +#define FD1_RWPF_SWAP_LWRD           BIT(2)
> +#define FD1_RWPF_SWAP_LLWD           BIT(3)
> +
> +/* IPC */
> +#define FD1_IPC_MODE                 0x0100
> +#define FD1_IPC_MODE_DLI             BIT(8)
> +#define FD1_IPC_MODE_DIM_ADAPT2D3D   (0 << 0)
> +#define FD1_IPC_MODE_DIM_FIXED2D     (1 << 0)
> +#define FD1_IPC_MODE_DIM_FIXED3D     (2 << 0)
> +#define FD1_IPC_MODE_DIM_PREVFIELD   (3 << 0)
> +#define FD1_IPC_MODE_DIM_NEXTFIELD   (4 << 0)
> +
> +#define FD1_IPC_SMSK_THRESH          0x0104
> +#define FD1_IPC_SMSK_THRESH_CONST    0x00010002
> +
> +#define FD1_IPC_COMB_DET             0x0108
> +#define FD1_IPC_COMB_DET_CONST               0x00200040
> +
> +#define FD1_IPC_MOTDEC                       0x010c
> +#define FD1_IPC_MOTDEC_CONST         0x00008020
> +
> +/* DLI registers */
> +#define FD1_IPC_DLI_BLEND            0x0120
> +#define FD1_IPC_DLI_BLEND_CONST              0x0080ff02
> +
> +#define FD1_IPC_DLI_HGAIN            0x0124
> +#define FD1_IPC_DLI_HGAIN_CONST              0x001000ff
> +
> +#define FD1_IPC_DLI_SPRS             0x0128
> +#define FD1_IPC_DLI_SPRS_CONST               0x009004ff
> +
> +#define FD1_IPC_DLI_ANGLE            0x012c
> +#define FD1_IPC_DLI_ANGLE_CONST              0x0004080c
> +
> +#define FD1_IPC_DLI_ISOPIX0          0x0130
> +#define FD1_IPC_DLI_ISOPIX0_CONST    0xff10ff10
> +
> +#define FD1_IPC_DLI_ISOPIX1          0x0134
> +#define FD1_IPC_DLI_ISOPIX1_CONST    0x0000ff10
> +
> +/* Sensor registers */
> +#define FD1_IPC_SENSOR_TH0           0x0140
> +#define FD1_IPC_SENSOR_TH0_CONST     0x20208080
> +
> +#define FD1_IPC_SENSOR_TH1           0x0144
> +#define FD1_IPC_SENSOR_TH1_CONST     0
> +
> +#define FD1_IPC_SENSOR_CTL0          0x0170
> +#define FD1_IPC_SENSOR_CTL0_CONST    0x00002201
> +
> +#define FD1_IPC_SENSOR_CTL1          0x0174
> +#define FD1_IPC_SENSOR_CTL1_CONST    0
> +
> +#define FD1_IPC_SENSOR_CTL2          0x0178
> +#define FD1_IPC_SENSOR_CTL2_X_SHIFT  16
> +#define FD1_IPC_SENSOR_CTL2_Y_SHIFT  0
> +
> +#define FD1_IPC_SENSOR_CTL3          0x017c
> +#define FD1_IPC_SENSOR_CTL3_0_SHIFT  16
> +#define FD1_IPC_SENSOR_CTL3_1_SHIFT  0
> +
> +/* Line memory pixel number register */
> +#define FD1_IPC_LMEM                 0x01e0
> +#define FD1_IPC_LMEM_LINEAR          1024
> +#define FD1_IPC_LMEM_TILE            960
> +
> +/* Internal Data (HW Version) */
> +#define FD1_IP_INTDATA                       0x0800
> +#define FD1_IP_H3                    0x02010101
> +#define FD1_IP_M3W                   0x02010202
> +
> +/* LUTs */
> +#define FD1_LUT_DIF_ADJ                      0x1000
> +#define FD1_LUT_SAD_ADJ                      0x1400
> +#define FD1_LUT_BLD_GAIN             0x1800
> +#define FD1_LUT_DIF_GAIN             0x1c00
> +#define FD1_LUT_MDET                 0x2000
> +
> +/**
> + * struct fdp1_fmt - The FDP1 internal format data
> + * @fourcc: the fourcc code, to match the V4L2 API
> + * @bpp: bits per pixel per plane
> + * @num_planes: number of planes
> + * @hsub: horizontal subsampling factor
> + * @vsub: vertical subsampling factor
> + * @fmt: 7-bit format code for the fdp1 hardware
> + * @swap_yc: the Y and C components are swapped (Y comes before C)
> + * @swap_uv: the U and V components are swapped (V comes before U)
> + * @swap: swap register control
> + * @types: types of queue this format is applicable to
> + */
> +struct fdp1_fmt {
> +     u32     fourcc;
> +     u8      bpp[3];
> +     u8      num_planes;
> +     u8      hsub;
> +     u8      vsub;
> +     u8      fmt;
> +     bool    swap_yc;
> +     bool    swap_uv;
> +     u8      swap;
> +     u8      types;
> +};
> +
> +static const struct fdp1_fmt fdp1_formats[] = {
> +     /* RGB formats are only supported by the Write Pixel Formatter */
> +
> +     { V4L2_PIX_FMT_RGB332, { 8, 0, 0 }, 1, 1, 1, 0x00, false, false,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
> +       FDP1_CAPTURE },
> +     { V4L2_PIX_FMT_XRGB444, { 16, 0, 0 }, 1, 1, 1, 0x01, false, false,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD,
> +       FDP1_CAPTURE },
> +     { V4L2_PIX_FMT_XRGB555, { 16, 0, 0 }, 1, 1, 1, 0x04, false, false,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD,
> +       FDP1_CAPTURE },
> +     { V4L2_PIX_FMT_RGB565, { 16, 0, 0 }, 1, 1, 1, 0x06, false, false,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD,
> +       FDP1_CAPTURE },
> +     { V4L2_PIX_FMT_ABGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
> +       FDP1_CAPTURE },
> +     { V4L2_PIX_FMT_XBGR32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD,
> +       FDP1_CAPTURE },
> +     { V4L2_PIX_FMT_ARGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
> +       FDP1_CAPTURE },
> +     { V4L2_PIX_FMT_XRGB32, { 32, 0, 0 }, 1, 1, 1, 0x13, false, false,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
> +       FDP1_CAPTURE },
> +     { V4L2_PIX_FMT_RGB24, { 24, 0, 0 }, 1, 1, 1, 0x15, false, false,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
> +       FDP1_CAPTURE },
> +     { V4L2_PIX_FMT_BGR24, { 24, 0, 0 }, 1, 1, 1, 0x18, false, false,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
> +       FDP1_CAPTURE },
> +     { V4L2_PIX_FMT_ARGB444, { 16, 0, 0 }, 1, 1, 1, 0x19, false, false,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD,
> +       FDP1_CAPTURE },
> +     { V4L2_PIX_FMT_ARGB555, { 16, 0, 0 }, 1, 1, 1, 0x1b, false, false,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD,
> +       FDP1_CAPTURE },
> +
> +     /* YUV Formats are supported by Read and Write Pixel Formatters */
> +
> +     { V4L2_PIX_FMT_NV16M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, false,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
> +       FDP1_CAPTURE | FDP1_OUTPUT },
> +     { V4L2_PIX_FMT_NV61M, { 8, 16, 0 }, 2, 2, 1, 0x41, false, true,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
> +       FDP1_CAPTURE | FDP1_OUTPUT },
> +     { V4L2_PIX_FMT_NV12M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, false,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
> +       FDP1_CAPTURE | FDP1_OUTPUT },
> +     { V4L2_PIX_FMT_NV21M, { 8, 16, 0 }, 2, 2, 2, 0x42, false, true,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
> +       FDP1_CAPTURE | FDP1_OUTPUT },
> +     { V4L2_PIX_FMT_UYVY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, false,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
> +       FDP1_CAPTURE | FDP1_OUTPUT },
> +     { V4L2_PIX_FMT_VYUY, { 16, 0, 0 }, 1, 2, 1, 0x47, false, true,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
> +       FDP1_CAPTURE | FDP1_OUTPUT },
> +     { V4L2_PIX_FMT_YUYV, { 16, 0, 0 }, 1, 2, 1, 0x47, true, false,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
> +       FDP1_CAPTURE | FDP1_OUTPUT },
> +     { V4L2_PIX_FMT_YVYU, { 16, 0, 0 }, 1, 2, 1, 0x47, true, true,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
> +       FDP1_CAPTURE | FDP1_OUTPUT },
> +     { V4L2_PIX_FMT_YUV444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, false,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
> +       FDP1_CAPTURE | FDP1_OUTPUT },
> +     { V4L2_PIX_FMT_YVU444M, { 8, 8, 8 }, 3, 1, 1, 0x4a, false, true,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
> +       FDP1_CAPTURE | FDP1_OUTPUT },
> +     { V4L2_PIX_FMT_YUV422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, false,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
> +       FDP1_CAPTURE | FDP1_OUTPUT },
> +     { V4L2_PIX_FMT_YVU422M, { 8, 8, 8 }, 3, 2, 1, 0x4b, false, true,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
> +       FDP1_CAPTURE | FDP1_OUTPUT },
> +     { V4L2_PIX_FMT_YUV420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, false,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
> +       FDP1_CAPTURE | FDP1_OUTPUT },
> +     { V4L2_PIX_FMT_YVU420M, { 8, 8, 8 }, 3, 2, 2, 0x4c, false, true,
> +       FD1_RWPF_SWAP_LLWD | FD1_RWPF_SWAP_LWRD |
> +       FD1_RWPF_SWAP_WORD | FD1_RWPF_SWAP_BYTE,
> +       FDP1_CAPTURE | FDP1_OUTPUT },
> +};
> +
> +static int fdp1_fmt_is_rgb(const struct fdp1_fmt *fmt)
> +{
> +     return fmt->fmt <= 0x1b; /* Last RGB code */
> +}
> +
> +/*
> + * FDP1 Lookup tables range from 0...255 only
> + *
> + * Each table must be less than 256 entries, and all tables
> + * are padded out to 256 entries by duplicating the last value.
> + */
> +static const u8 fdp1_diff_adj[] = {
> +     0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
> +     0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
> +     0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
> +};
> +
> +static const u8 fdp1_sad_adj[] = {
> +     0x00, 0x24, 0x43, 0x5e, 0x76, 0x8c, 0x9e, 0xaf,
> +     0xbd, 0xc9, 0xd4, 0xdd, 0xe4, 0xea, 0xef, 0xf3,
> +     0xf6, 0xf9, 0xfb, 0xfc, 0xfd, 0xfe, 0xfe, 0xff,
> +};
> +
> +static const u8 fdp1_bld_gain[] = {
> +     0x80,
> +};
> +
> +static const u8 fdp1_dif_gain[] = {
> +     0x80,
> +};
> +
> +static const u8 fdp1_mdet[] = {
> +     0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
> +     0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
> +     0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
> +     0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
> +     0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
> +     0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
> +     0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
> +     0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
> +     0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
> +     0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
> +     0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
> +     0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
> +     0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
> +     0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
> +     0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
> +     0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
> +     0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
> +     0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
> +     0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
> +     0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
> +     0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
> +     0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
> +     0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
> +     0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
> +     0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
> +     0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
> +     0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
> +     0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
> +     0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
> +     0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
> +     0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
> +     0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
> +};
> +
> +/* Per-queue, driver-specific private data */
> +struct fdp1_q_data {
> +     const struct fdp1_fmt           *fmt;
> +     struct v4l2_pix_format_mplane   format;
> +
> +     unsigned int                    vsize;
> +     unsigned int                    stride_y;
> +     unsigned int                    stride_c;
> +};
> +
> +static const struct fdp1_fmt *fdp1_find_format(u32 pixelformat)
> +{
> +     const struct fdp1_fmt *fmt;
> +     unsigned int i;
> +
> +     for (i = 0; i < ARRAY_SIZE(fdp1_formats); i++) {
> +             fmt = &fdp1_formats[i];
> +             if (fmt->fourcc == pixelformat)
> +                     return fmt;
> +     }
> +
> +     return NULL;
> +}
> +
> +enum fdp1_deint_mode {
> +     FDP1_PROGRESSIVE = 0, /* Must be zero when !deinterlacing */
> +     FDP1_ADAPT2D3D,
> +     FDP1_FIXED2D,
> +     FDP1_FIXED3D,
> +     FDP1_PREVFIELD,
> +     FDP1_NEXTFIELD,
> +};
> +
> +#define FDP1_DEINT_MODE_USES_NEXT(mode) \
> +     (mode == FDP1_ADAPT2D3D || \
> +      mode == FDP1_FIXED3D   || \
> +      mode == FDP1_NEXTFIELD)
> +
> +#define FDP1_DEINT_MODE_USES_PREV(mode) \
> +     (mode == FDP1_ADAPT2D3D || \
> +      mode == FDP1_FIXED3D   || \
> +      mode == FDP1_PREVFIELD)
> +
> +/*
> + * FDP1 operates on potentially 3 fields, which are tracked
> + * from the VB buffers using this context structure.
> + * Will always be a field or a full frame, never two fields.
> + */
> +struct fdp1_field_buffer {
> +     struct vb2_v4l2_buffer          *vb;
> +     dma_addr_t                      addrs[3];
> +
> +     /* Should be NONE:TOP:BOTTOM only */
> +     enum v4l2_field                 field;
> +
> +     /* Flag to indicate this is the last field in the vb */
> +     bool                            last_field;
> +
> +     /* Buffer queue lists */
> +     struct list_head                list;
> +};
> +
> +struct fdp1_buffer {
> +     struct v4l2_m2m_buffer          m2m_buf;
> +     struct fdp1_field_buffer        fields[2];
> +     unsigned int                    num_fields;
> +};
> +
> +static inline struct fdp1_buffer *to_fdp1_buffer(struct vb2_v4l2_buffer *vb)
> +{
> +     return container_of(vb, struct fdp1_buffer, m2m_buf.vb);
> +}
> +
> +struct fdp1_job {
> +     struct fdp1_field_buffer        *previous;
> +     struct fdp1_field_buffer        *active;
> +     struct fdp1_field_buffer        *next;
> +     struct fdp1_field_buffer        *dst;
> +
> +     /* A job can only be on one list at a time */
> +     struct list_head                list;
> +};
> +
> +struct fdp1_dev {
> +     struct v4l2_device              v4l2_dev;
> +     struct video_device             vfd;
> +
> +     struct mutex                    dev_mutex;
> +     spinlock_t                      irqlock;
> +     spinlock_t                      device_process_lock;
> +
> +     void __iomem                    *regs;
> +     unsigned int                    irq;
> +     struct device                   *dev;
> +
> +     /* Job Queues */
> +     struct fdp1_job                 jobs[FDP1_NUMBER_JOBS];
> +     struct list_head                free_job_list;
> +     struct list_head                queued_job_list;
> +     struct list_head                hw_job_list;
> +
> +     unsigned int                    clk_rate;
> +
> +     struct rcar_fcp_device          *fcp;
> +     struct v4l2_m2m_dev             *m2m_dev;
> +};
> +
> +struct fdp1_ctx {
> +     struct v4l2_fh                  fh;
> +     struct fdp1_dev                 *fdp1;
> +
> +     struct v4l2_ctrl_handler        hdl;
> +     unsigned int                    sequence;
> +
> +     /* Processed buffers in this transaction */
> +     u8                              num_processed;
> +
> +     /* Transaction length (i.e. how many buffers per transaction) */
> +     u32                             translen;
> +
> +     /* Abort requested by m2m */
> +     int                             aborting;
> +
> +     /* Deinterlace processing mode */
> +     enum fdp1_deint_mode            deint_mode;
> +
> +     /*
> +      * Adaptive 2D/3D mode uses a shared mask
> +      * This is allocated at streamon, if the ADAPT2D3D mode
> +      * is requested
> +      */
> +     unsigned int                    smsk_size;
> +     dma_addr_t                      smsk_addr[2];
> +     void                            *smsk_cpu;
> +
> +     /* Capture pipeline, can specify an alpha value
> +      * for supported formats. 0-255 only
> +      */
> +     unsigned char                   alpha;
> +
> +     /* Source and destination queue data */
> +     struct fdp1_q_data              out_q; /* HW Source */
> +     struct fdp1_q_data              cap_q; /* HW Destination */
> +
> +     /*
> +      * Field Queues
> +      * Interlaced fields fields are used on 3 occasions,

s/fields fields/fields/

> +      * and tracked in this list.
> +      *
> +      * V4L2 Buffers are tracked inside the fdp1_buffer
> +      * and released when the last 'field' completes
> +      */
> +     struct list_head                fields_queue;
> +     unsigned int                    buffers_queued;
> +
> +     /*
> +      * For de-interlacing we need to track our previous buffer
> +      * while preparing our job lists.
> +      */
> +     struct fdp1_field_buffer        *previous;
> +};
> +
> +static inline struct fdp1_ctx *fh_to_ctx(struct v4l2_fh *fh)
> +{
> +     return container_of(fh, struct fdp1_ctx, fh);
> +}
> +
> +static struct fdp1_q_data *get_q_data(struct fdp1_ctx *ctx,
> +                                      enum v4l2_buf_type type)
> +{
> +     if (V4L2_TYPE_IS_OUTPUT(type))
> +             return &ctx->out_q;
> +     else
> +             return &ctx->cap_q;
> +}
> +
> +/*
> + * list_remove_job: Take the first item off the specified job list
> + *
> + * Returns: pointer to a job, or NULL if the list is empty.
> + */
> +static struct fdp1_job *list_remove_job(struct fdp1_dev *fdp1,
> +                                      struct list_head *list)
> +{
> +     struct fdp1_job *job;
> +     unsigned long flags;
> +
> +     spin_lock_irqsave(&fdp1->irqlock, flags);
> +     job = list_first_entry_or_null(list, struct fdp1_job, list);
> +     if (job)
> +             list_del(&job->list);
> +     spin_unlock_irqrestore(&fdp1->irqlock, flags);
> +
> +     return job;
> +}
> +
> +/*
> + * list_add_job: Add a job to the specified job list
> + *
> + * Returns: void - always succeeds
> + */
> +static void list_add_job(struct fdp1_dev *fdp1,
> +                      struct list_head *list,
> +                      struct fdp1_job *job)
> +{
> +     unsigned long flags;
> +
> +     spin_lock_irqsave(&fdp1->irqlock, flags);
> +     list_add_tail(&job->list, list);
> +     spin_unlock_irqrestore(&fdp1->irqlock, flags);
> +}
> +
> +static struct fdp1_job *fdp1_job_alloc(struct fdp1_dev *fdp1)
> +{
> +     return list_remove_job(fdp1, &fdp1->free_job_list);
> +}
> +
> +static void fdp1_job_free(struct fdp1_dev *fdp1, struct fdp1_job *job)
> +{
> +     /* Ensure that all residue from previous jobs is gone */
> +     memset(job, 0, sizeof(struct fdp1_job));
> +
> +     list_add_job(fdp1, &fdp1->free_job_list, job);
> +}
> +
> +static void queue_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
> +{
> +     list_add_job(fdp1, &fdp1->queued_job_list, job);
> +}
> +
> +static struct fdp1_job *get_queued_job(struct fdp1_dev *fdp1)
> +{
> +     return list_remove_job(fdp1, &fdp1->queued_job_list);
> +}
> +
> +static void queue_hw_job(struct fdp1_dev *fdp1, struct fdp1_job *job)
> +{
> +     list_add_job(fdp1, &fdp1->hw_job_list, job);
> +}
> +
> +static struct fdp1_job *get_hw_queued_job(struct fdp1_dev *fdp1)
> +{
> +     return list_remove_job(fdp1, &fdp1->hw_job_list);
> +}
> +
> +/*
> + * Buffer lists handling
> + */
> +static void fdp1_field_complete(struct fdp1_ctx *ctx,
> +                             struct fdp1_field_buffer *fbuf)
> +{
> +     /* job->previous may be on the first field */
> +     if (!fbuf)
> +             return;
> +
> +     if (fbuf->last_field)
> +             v4l2_m2m_buf_done(fbuf->vb, VB2_BUF_STATE_DONE);
> +}
> +
> +static void fdp1_queue_field(struct fdp1_ctx *ctx,
> +                          struct fdp1_field_buffer *fbuf)
> +{
> +     unsigned long flags;
> +
> +     spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
> +     list_add_tail(&fbuf->list, &ctx->fields_queue);
> +     spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
> +
> +     ctx->buffers_queued++;
> +}
> +
> +static struct fdp1_field_buffer *fdp1_dequeue_field(struct fdp1_ctx *ctx)
> +{
> +     struct fdp1_field_buffer *fbuf;
> +     unsigned long flags;
> +
> +     ctx->buffers_queued--;
> +
> +     spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
> +     fbuf = list_first_entry_or_null(&ctx->fields_queue,
> +                                     struct fdp1_field_buffer, list);
> +     if (fbuf)
> +             list_del(&fbuf->list);
> +     spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
> +
> +     return fbuf;
> +}
> +
> +/*
> + * Return the next field in the queue - or NULL,
> + * without removing the item from the list
> + */
> +static struct fdp1_field_buffer *fdp1_peek_queued_field(struct fdp1_ctx *ctx)
> +{
> +     struct fdp1_field_buffer *fbuf;
> +     unsigned long flags;
> +
> +     spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
> +     fbuf = list_first_entry_or_null(&ctx->fields_queue,
> +                                     struct fdp1_field_buffer, list);
> +     spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
> +
> +     return fbuf;
> +}
> +
> +static u32 fdp1_read(struct fdp1_dev *fdp1, unsigned int reg)
> +{
> +     u32 value = ioread32(fdp1->regs + reg);
> +
> +     if (debug >= 2)
> +             dprintk(fdp1, "Read 0x%08x from 0x%04x\n", value, reg);
> +
> +     return value;
> +}
> +
> +static void fdp1_write(struct fdp1_dev *fdp1, u32 val, unsigned int reg)
> +{
> +     if (debug >= 2)
> +             dprintk(fdp1, "Write 0x%08x to 0x%04x\n", val, reg);
> +
> +     iowrite32(val, fdp1->regs + reg);
> +}
> +
> +/* IPC registers are to be programmed with constant values */
> +static void fdp1_set_ipc_dli(struct fdp1_ctx *ctx)
> +{
> +     struct fdp1_dev *fdp1 = ctx->fdp1;
> +
> +     fdp1_write(fdp1, FD1_IPC_SMSK_THRESH_CONST,     FD1_IPC_SMSK_THRESH);
> +     fdp1_write(fdp1, FD1_IPC_COMB_DET_CONST,        FD1_IPC_COMB_DET);
> +     fdp1_write(fdp1, FD1_IPC_MOTDEC_CONST,  FD1_IPC_MOTDEC);
> +
> +     fdp1_write(fdp1, FD1_IPC_DLI_BLEND_CONST,       FD1_IPC_DLI_BLEND);
> +     fdp1_write(fdp1, FD1_IPC_DLI_HGAIN_CONST,       FD1_IPC_DLI_HGAIN);
> +     fdp1_write(fdp1, FD1_IPC_DLI_SPRS_CONST,        FD1_IPC_DLI_SPRS);
> +     fdp1_write(fdp1, FD1_IPC_DLI_ANGLE_CONST,       FD1_IPC_DLI_ANGLE);
> +     fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX0_CONST,     FD1_IPC_DLI_ISOPIX0);
> +     fdp1_write(fdp1, FD1_IPC_DLI_ISOPIX1_CONST,     FD1_IPC_DLI_ISOPIX1);
> +}
> +
> +
> +static void fdp1_set_ipc_sensor(struct fdp1_ctx *ctx)
> +{
> +     struct fdp1_dev *fdp1 = ctx->fdp1;
> +     struct fdp1_q_data *src_q_data = &ctx->out_q;
> +     unsigned int x0, x1;
> +     unsigned int hsize = src_q_data->format.width;
> +     unsigned int vsize = src_q_data->format.height;
> +
> +     x0 = hsize / 3;
> +     x1 = 2 * hsize / 3;
> +
> +     fdp1_write(fdp1, FD1_IPC_SENSOR_TH0_CONST, FD1_IPC_SENSOR_TH0);
> +     fdp1_write(fdp1, FD1_IPC_SENSOR_TH1_CONST, FD1_IPC_SENSOR_TH1);
> +     fdp1_write(fdp1, FD1_IPC_SENSOR_CTL0_CONST, FD1_IPC_SENSOR_CTL0);
> +     fdp1_write(fdp1, FD1_IPC_SENSOR_CTL1_CONST, FD1_IPC_SENSOR_CTL1);
> +
> +     fdp1_write(fdp1, ((hsize - 1) << FD1_IPC_SENSOR_CTL2_X_SHIFT) |
> +                      ((vsize - 1) << FD1_IPC_SENSOR_CTL2_Y_SHIFT),
> +                      FD1_IPC_SENSOR_CTL2);
> +
> +     fdp1_write(fdp1, (x0 << FD1_IPC_SENSOR_CTL3_0_SHIFT) |
> +                      (x1 << FD1_IPC_SENSOR_CTL3_1_SHIFT),
> +                      FD1_IPC_SENSOR_CTL3);
> +}
> +
> +/*
> + * fdp1_write_lut: Write a padded LUT to the hw
> + *
> + * FDP1 uses constant data for de-interlacing processing,
> + * with large tables. These hardware tables are all 256 bytes
> + * long, however they often contain repeated data at the end.
> + *
> + * The last byte of the table is written to all remaining entries.
> + */
> +static void fdp1_write_lut(struct fdp1_dev *fdp1, const u8 *lut,
> +                        unsigned int len, unsigned int base)
> +{
> +     unsigned int i;
> +     u8 pad;
> +
> +     /* Tables larger than the hw are clipped */
> +     len = min(len, 256u);
> +
> +     for (i = 0; i < len; i++)
> +             fdp1_write(fdp1, lut[i], base + (i*4));
> +
> +     /* Tables are padded with the last entry */
> +     pad = lut[i-1];
> +
> +     for (; i < 256; i++)
> +             fdp1_write(fdp1, pad, base + (i*4));
> +}
> +
> +static void fdp1_set_lut(struct fdp1_dev *fdp1)
> +{
> +     fdp1_write_lut(fdp1, fdp1_diff_adj, ARRAY_SIZE(fdp1_diff_adj),
> +                     FD1_LUT_DIF_ADJ);
> +     fdp1_write_lut(fdp1, fdp1_sad_adj,  ARRAY_SIZE(fdp1_sad_adj),
> +                     FD1_LUT_SAD_ADJ);
> +     fdp1_write_lut(fdp1, fdp1_bld_gain, ARRAY_SIZE(fdp1_bld_gain),
> +                     FD1_LUT_BLD_GAIN);
> +     fdp1_write_lut(fdp1, fdp1_dif_gain, ARRAY_SIZE(fdp1_dif_gain),
> +                     FD1_LUT_DIF_GAIN);
> +     fdp1_write_lut(fdp1, fdp1_mdet, ARRAY_SIZE(fdp1_mdet),
> +                     FD1_LUT_MDET);
> +}
> +
> +static void fdp1_configure_rpf(struct fdp1_ctx *ctx,
> +                            struct fdp1_job *job)
> +{
> +     struct fdp1_dev *fdp1 = ctx->fdp1;
> +     u32 picture_size;
> +     u32 pstride;
> +     u32 format;
> +     u32 smsk_addr;
> +
> +     struct fdp1_q_data *q_data = &ctx->out_q;
> +
> +     /* Picture size is common to Source and Destination frames */
> +     picture_size = (q_data->format.width << FD1_RPF_SIZE_H_SHIFT)
> +                  | (q_data->vsize << FD1_RPF_SIZE_V_SHIFT);
> +
> +     /* Strides */
> +     pstride = q_data->stride_y << FD1_RPF_PSTRIDE_Y_SHIFT;
> +     if (q_data->format.num_planes > 1)
> +             pstride |= q_data->stride_c << FD1_RPF_PSTRIDE_C_SHIFT;
> +
> +     /* Format control */
> +     format = q_data->fmt->fmt;
> +     if (q_data->fmt->swap_yc)
> +             format |= FD1_RPF_FORMAT_RSPYCS;
> +
> +     if (q_data->fmt->swap_uv)
> +             format |= FD1_RPF_FORMAT_RSPUVS;
> +
> +     if (job->active->field == V4L2_FIELD_BOTTOM) {
> +             format |= FD1_RPF_FORMAT_CF; /* Set for Bottom field */
> +             smsk_addr = ctx->smsk_addr[0];
> +     } else {
> +             smsk_addr = ctx->smsk_addr[1];
> +     }
> +
> +     /* Deint mode is non-zero when deinterlacing */
> +     if (ctx->deint_mode)
> +             format |= FD1_RPF_FORMAT_CIPM;
> +
> +     fdp1_write(fdp1, format, FD1_RPF_FORMAT);
> +     fdp1_write(fdp1, q_data->fmt->swap, FD1_RPF_SWAP);
> +     fdp1_write(fdp1, picture_size, FD1_RPF_SIZE);
> +     fdp1_write(fdp1, pstride, FD1_RPF_PSTRIDE);
> +     fdp1_write(fdp1, smsk_addr, FD1_RPF_SMSK_ADDR);
> +
> +     /* Previous Field Channel (CH0) */
> +     if (job->previous)
> +             fdp1_write(fdp1, job->previous->addrs[0], FD1_RPF0_ADDR_Y);
> +
> +     /* Current Field Channel (CH1) */
> +     fdp1_write(fdp1, job->active->addrs[0], FD1_RPF1_ADDR_Y);
> +     fdp1_write(fdp1, job->active->addrs[1], FD1_RPF1_ADDR_C0);
> +     fdp1_write(fdp1, job->active->addrs[2], FD1_RPF1_ADDR_C1);
> +
> +     /* Next Field  Channel (CH2) */
> +     if (job->next)
> +             fdp1_write(fdp1, job->next->addrs[0], FD1_RPF2_ADDR_Y);
> +}
> +
> +static void fdp1_configure_wpf(struct fdp1_ctx *ctx,
> +                            struct fdp1_job *job)
> +{
> +     struct fdp1_dev *fdp1 = ctx->fdp1;
> +     struct fdp1_q_data *src_q_data = &ctx->out_q;
> +     struct fdp1_q_data *q_data = &ctx->cap_q;
> +     u32 pstride;
> +     u32 format;
> +     u32 swap;
> +     u32 rndctl;
> +
> +     pstride = q_data->format.plane_fmt[0].bytesperline
> +                     << FD1_WPF_PSTRIDE_Y_SHIFT;
> +
> +     if (q_data->format.num_planes > 1)
> +             pstride |= q_data->format.plane_fmt[1].bytesperline
> +                     << FD1_WPF_PSTRIDE_C_SHIFT;
> +
> +     format = q_data->fmt->fmt; /* Output Format Code */
> +
> +     if (q_data->fmt->swap_yc)
> +             format |= FD1_WPF_FORMAT_WSPYCS;
> +
> +     if (q_data->fmt->swap_uv)
> +             format |= FD1_WPF_FORMAT_WSPUVS;
> +
> +     if (fdp1_fmt_is_rgb(q_data->fmt)) {
> +             /* Enable Colour Space conversion */
> +             format |= FD1_WPF_FORMAT_CSC;
> +
> +             /* Set WRTM */
> +             if (src_q_data->format.ycbcr_enc == V4L2_YCBCR_ENC_709)
> +                     format |= FD1_WPF_FORMAT_WRTM_709_16;
> +             else if (src_q_data->format.quantization ==
> +                             V4L2_QUANTIZATION_FULL_RANGE)
> +                     format |= FD1_WPF_FORMAT_WRTM_601_0;
> +             else
> +                     format |= FD1_WPF_FORMAT_WRTM_601_16;
> +     }
> +
> +     /* Set an alpha value into the Pad Value */
> +     format |= ctx->alpha << FD1_WPF_FORMAT_PDV_SHIFT;
> +
> +     /* Determine picture rounding and clipping */
> +     rndctl = FD1_WPF_RNDCTL_CBRM; /* Rounding Off */
> +     rndctl |= FD1_WPF_RNDCTL_CLMD_NOCLIP;
> +
> +     /* WPF Swap needs both ISWAP and OSWAP setting */
> +     swap = q_data->fmt->swap << FD1_WPF_SWAP_OSWAP_SHIFT;
> +     swap |= src_q_data->fmt->swap << FD1_WPF_SWAP_SSWAP_SHIFT;
> +
> +     fdp1_write(fdp1, format, FD1_WPF_FORMAT);
> +     fdp1_write(fdp1, rndctl, FD1_WPF_RNDCTL);
> +     fdp1_write(fdp1, swap, FD1_WPF_SWAP);
> +     fdp1_write(fdp1, pstride, FD1_WPF_PSTRIDE);
> +
> +     fdp1_write(fdp1, job->dst->addrs[0], FD1_WPF_ADDR_Y);
> +     fdp1_write(fdp1, job->dst->addrs[1], FD1_WPF_ADDR_C0);
> +     fdp1_write(fdp1, job->dst->addrs[2], FD1_WPF_ADDR_C1);
> +}
> +
> +static void fdp1_configure_deint_mode(struct fdp1_ctx *ctx,
> +                                   struct fdp1_job *job)
> +{
> +     struct fdp1_dev *fdp1 = ctx->fdp1;
> +     u32 opmode = FD1_CTL_OPMODE_VIMD_NOINTERRUPT;
> +     u32 ipcmode = FD1_IPC_MODE_DLI; /* Always set */
> +     u32 channels = FD1_CTL_CHACT_WR | FD1_CTL_CHACT_RD1; /* Always on */
> +
> +     /* De-interlacing Mode */
> +     switch (ctx->deint_mode) {
> +     default:
> +     case FDP1_PROGRESSIVE:
> +             dprintk(fdp1, "Progressive Mode\n");
> +             opmode |= FD1_CTL_OPMODE_PRG;
> +             ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
> +             break;
> +     case FDP1_ADAPT2D3D:
> +             dprintk(fdp1, "Adapt2D3D Mode\n");
> +             if (ctx->sequence == 0 || ctx->aborting)
> +                     ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
> +             else
> +                     ipcmode |= FD1_IPC_MODE_DIM_ADAPT2D3D;
> +
> +             if (ctx->sequence > 1) {
> +                     channels |= FD1_CTL_CHACT_SMW;
> +                     channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
> +             }
> +
> +             if (ctx->sequence > 2)
> +                     channels |= FD1_CTL_CHACT_SMR;
> +
> +             break;
> +     case FDP1_FIXED3D:
> +             dprintk(fdp1, "Fixed 3D Mode\n");
> +             ipcmode |= FD1_IPC_MODE_DIM_FIXED3D;
> +             /* Except for first and last frame, enable all channels */
> +             if (!(ctx->sequence == 0 || ctx->aborting))
> +                     channels |= FD1_CTL_CHACT_RD0 | FD1_CTL_CHACT_RD2;
> +             break;
> +     case FDP1_FIXED2D:
> +             dprintk(fdp1, "Fixed 2D Mode\n");
> +             ipcmode |= FD1_IPC_MODE_DIM_FIXED2D;
> +             /* No extra channels enabled */
> +             break;
> +     case FDP1_PREVFIELD:
> +             dprintk(fdp1, "Previous Field Mode\n");
> +             ipcmode |= FD1_IPC_MODE_DIM_PREVFIELD;
> +             channels |= FD1_CTL_CHACT_RD0; /* Previous */
> +             break;
> +     case FDP1_NEXTFIELD:
> +             dprintk(fdp1, "Next Field Mode\n");
> +             ipcmode |= FD1_IPC_MODE_DIM_NEXTFIELD;
> +             channels |= FD1_CTL_CHACT_RD2; /* Next */
> +             break;
> +     }
> +
> +     fdp1_write(fdp1, channels,      FD1_CTL_CHACT);
> +     fdp1_write(fdp1, opmode,        FD1_CTL_OPMODE);
> +     fdp1_write(fdp1, ipcmode,       FD1_IPC_MODE);
> +}
> +
> +/*
> + * fdp1_device_process() - Run the hardware
> + *
> + * Configure and start the hardware to generate a single frame
> + * of output given our input parameters.
> + */
> +static int fdp1_device_process(struct fdp1_ctx *ctx)
> +
> +{
> +     struct fdp1_dev *fdp1 = ctx->fdp1;
> +     struct fdp1_job *job;
> +     unsigned long flags;
> +
> +     spin_lock_irqsave(&fdp1->device_process_lock, flags);
> +
> +     /* Get a job to process */
> +     job = get_queued_job(fdp1);
> +     if (!job) {
> +             /*
> +              * VINT can call us to see if we can queue another job.
> +              * If we have no work to do, we simply return.
> +              */
> +             spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
> +             return 0;
> +     }
> +
> +     /* First Frame only? ... */
> +     fdp1_write(fdp1, FD1_CTL_CLKCTRL_CSTP_N, FD1_CTL_CLKCTRL);
> +
> +     /* Set the mode, and configuration */
> +     fdp1_configure_deint_mode(ctx, job);
> +
> +     /* DLI Static Configuration */
> +     fdp1_set_ipc_dli(ctx);
> +
> +     /* Sensor Configuration */
> +     fdp1_set_ipc_sensor(ctx);
> +
> +     /* Setup the source picture */
> +     fdp1_configure_rpf(ctx, job);
> +
> +     /* Setup the destination picture */
> +     fdp1_configure_wpf(ctx, job);
> +
> +     /* Line Memory Pixel Number Register for linear access */
> +     fdp1_write(fdp1, FD1_IPC_LMEM_LINEAR, FD1_IPC_LMEM);
> +
> +     /* Enable Interrupts */
> +     fdp1_write(fdp1, FD1_CTL_IRQ_MASK, FD1_CTL_IRQENB);
> +
> +     /* Finally, the Immediate Registers */
> +
> +     /* This job is now in the HW queue */
> +     queue_hw_job(fdp1, job);
> +
> +     /* Start the command */
> +     fdp1_write(fdp1, FD1_CTL_CMD_STRCMD, FD1_CTL_CMD);
> +
> +     /* Registers will update to HW at next VINT */
> +     fdp1_write(fdp1, FD1_CTL_REGEND_REGEND, FD1_CTL_REGEND);
> +
> +     /* Enable VINT Generator */
> +     fdp1_write(fdp1, FD1_CTL_SGCMD_SGEN, FD1_CTL_SGCMD);
> +
> +     spin_unlock_irqrestore(&fdp1->device_process_lock, flags);
> +
> +     return 0;
> +}
> +
> +/*
> + * mem2mem callbacks
> + */
> +
> +/**
> + * job_ready() - check whether an instance is ready to be scheduled to run
> + */
> +static int fdp1_m2m_job_ready(void *priv)
> +{
> +     struct fdp1_ctx *ctx = priv;
> +     struct fdp1_q_data *src_q_data = &ctx->out_q;
> +     int srcbufs = 1;
> +     int dstbufs = 1;
> +
> +     dprintk(ctx->fdp1, "+ Src: %d : Dst: %d\n",
> +                     v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx),
> +                     v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx));
> +
> +     /* One output buffer is required for each field */
> +     if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
> +             dstbufs = 2;
> +
> +     if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) < srcbufs
> +         || v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) < dstbufs) {
> +             dprintk(ctx->fdp1, "Not enough buffers available\n");
> +             return 0;
> +     }
> +
> +     return 1;
> +}
> +
> +static void fdp1_m2m_job_abort(void *priv)
> +{
> +     struct fdp1_ctx *ctx = priv;
> +
> +     dprintk(ctx->fdp1, "+\n");
> +
> +     /* Will cancel the transaction in the next interrupt handler */
> +     ctx->aborting = 1;
> +
> +     /* Immediate abort sequence */
> +     fdp1_write(ctx->fdp1, 0, FD1_CTL_SGCMD);
> +     fdp1_write(ctx->fdp1, FD1_CTL_SRESET_SRST, FD1_CTL_SRESET);
> +}
> +
> +/*
> + * fdp1_prepare_job: Prepare and queue a new job for a single action of work
> + *
> + * Prepare the next field, (or frame in progressive) and an output
> + * buffer for the hardware to perform a single operation.
> + */
> +static struct fdp1_job *fdp1_prepare_job(struct fdp1_ctx *ctx)
> +{
> +     struct vb2_v4l2_buffer *vbuf;
> +     struct fdp1_buffer *fbuf;
> +     struct fdp1_dev *fdp1 = ctx->fdp1;
> +     struct fdp1_job *job;
> +     unsigned int buffers_required = 1;
> +
> +     dprintk(fdp1, "+\n");
> +
> +     if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode))
> +             buffers_required = 2;
> +
> +     if (ctx->buffers_queued < buffers_required)
> +             return NULL;
> +
> +     job = fdp1_job_alloc(fdp1);
> +     if (!job) {
> +             dprintk(fdp1, "No free jobs currently available\n");
> +             return NULL;
> +     }
> +
> +     job->active = fdp1_dequeue_field(ctx);
> +     if (!job->active) {
> +             /* Buffer check should prevent this ever happening */
> +             dprintk(fdp1, "No input buffers currently available\n");
> +
> +             fdp1_job_free(fdp1, job);
> +             return NULL;
> +     }
> +
> +     dprintk(fdp1, "+ Buffer en-route...\n");
> +
> +     /* Source buffers have been prepared on our buffer_queue
> +      * Prepare our Output buffer
> +      */
> +     vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
> +     fbuf = to_fdp1_buffer(vbuf);
> +     job->dst = &fbuf->fields[0];
> +
> +     job->active->vb->sequence = ctx->sequence;
> +     job->dst->vb->sequence = ctx->sequence;
> +     ctx->sequence++;
> +
> +     if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode)) {
> +             job->previous = ctx->previous;
> +
> +             /* Active buffer becomes the next job's previous buffer */
> +             ctx->previous = job->active;
> +     }
> +
> +     if (FDP1_DEINT_MODE_USES_NEXT(ctx->deint_mode)) {
> +             /* Must be called after 'active' is dequeued */
> +             job->next = fdp1_peek_queued_field(ctx);
> +     }
> +
> +     /* Transfer timestamps and flags from src->dst */
> +
> +     job->dst->vb->vb2_buf.timestamp = job->active->vb->vb2_buf.timestamp;
> +
> +     job->dst->vb->flags = job->active->vb->flags &
> +                             V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
> +
> +     /* Ideally, the frame-end function will just 'check' to see
> +      * if there are more jobs instead
> +      */
> +     ctx->translen++;
> +
> +     /* Finally, Put this job on the processing queue */
> +     queue_job(fdp1, job);
> +
> +     dprintk(fdp1, "Job Queued translen = %d\n", ctx->translen);
> +
> +     return job;
> +}
> +
> +/* fdp1_m2m_device_run() - prepares and starts the device for an M2M task
> + *
> + * A single input buffer is taken and serialised into our fdp1_buffer
> + * queue. The queue is then processed to create as many jobs as possible
> + * from our available input.
> + */
> +static void fdp1_m2m_device_run(void *priv)
> +{
> +     struct fdp1_ctx *ctx = priv;
> +     struct fdp1_dev *fdp1 = ctx->fdp1;
> +     struct vb2_v4l2_buffer *src_vb;
> +     struct fdp1_buffer *buf;
> +     unsigned int i;
> +
> +     dprintk(fdp1, "+\n");
> +
> +     ctx->translen = 0;
> +
> +     /* Get our incoming buffer of either one or two fields, or one frame */
> +     src_vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
> +     buf = to_fdp1_buffer(src_vb);
> +
> +     for (i = 0; i < buf->num_fields; i++) {
> +             struct fdp1_field_buffer *fbuf = &buf->fields[i];
> +
> +             fdp1_queue_field(ctx, fbuf);
> +             dprintk(fdp1, "Queued Buffer [%d] last_field:%d\n",
> +                             i, fbuf->last_field);
> +     }
> +
> +     /* Queue as many jobs as our data provides for */
> +     while (fdp1_prepare_job(ctx))
> +             ;
> +
> +     if (ctx->translen == 0) {
> +             dprintk(fdp1, "No jobs were processed. M2M action complete\n");
> +             v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
> +             return;
> +     }
> +
> +     /* Kick the job processing action */
> +     fdp1_device_process(ctx);
> +}
> +
> +/*
> + * device_frame_end:
> + *
> + * Handles the M2M level after a buffer completion event.
> + */
> +static void device_frame_end(struct fdp1_dev *fdp1,
> +                          enum vb2_buffer_state state)
> +{
> +     struct fdp1_ctx *ctx;
> +     unsigned long flags;
> +     struct fdp1_job *job = get_hw_queued_job(fdp1);
> +
> +     dprintk(fdp1, "+\n");
> +
> +     ctx = v4l2_m2m_get_curr_priv(fdp1->m2m_dev);
> +
> +     if (ctx == NULL) {
> +             v4l2_err(&fdp1->v4l2_dev,
> +                     "Instance released before the end of transaction\n");
> +             return;
> +     }
> +
> +     ctx->num_processed++;
> +
> +     /*
> +      * fdp1_field_complete will call buf_done only when the last vb2_buffer
> +      * reference is complete
> +      */
> +     if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
> +             fdp1_field_complete(ctx, job->previous);
> +     else
> +             fdp1_field_complete(ctx, job->active);
> +
> +     spin_lock_irqsave(&fdp1->irqlock, flags);
> +     v4l2_m2m_buf_done(job->dst->vb, state);
> +     job->dst = NULL;
> +     spin_unlock_irqrestore(&fdp1->irqlock, flags);
> +
> +     /* Move this job back to the free job list */
> +     fdp1_job_free(fdp1, job);
> +
> +     dprintk(fdp1, "curr_ctx->num_processed %d curr_ctx->translen %d\n",
> +                     ctx->num_processed, ctx->translen);
> +
> +     if (ctx->num_processed == ctx->translen ||
> +                     ctx->aborting) {
> +             dprintk(ctx->fdp1, "Finishing transaction\n");
> +             ctx->num_processed = 0;
> +             v4l2_m2m_job_finish(fdp1->m2m_dev, ctx->fh.m2m_ctx);
> +     } else {
> +             /*
> +              * For pipelined performance support, this would
> +              * be called from a VINT handler
> +              */
> +             fdp1_device_process(ctx);
> +     }
> +}
> +
> +/*
> + * video ioctls
> + */
> +static int fdp1_vidioc_querycap(struct file *file, void *priv,
> +                        struct v4l2_capability *cap)
> +{
> +     strlcpy(cap->driver, DRIVER_NAME, sizeof(cap->driver));
> +     strlcpy(cap->card, DRIVER_NAME, sizeof(cap->card));
> +     snprintf(cap->bus_info, sizeof(cap->bus_info),
> +                     "platform:%s", DRIVER_NAME);
> +     return 0;
> +}
> +
> +static int fdp1_enum_fmt(struct v4l2_fmtdesc *f, u32 type)
> +{
> +     unsigned int i, num;
> +
> +     num = 0;
> +
> +     for (i = 0; i < ARRAY_SIZE(fdp1_formats); ++i) {
> +             if (fdp1_formats[i].types & type) {
> +                     if (num == f->index)
> +                             break;
> +                     ++num;
> +             }
> +     }
> +
> +     /* Format not found */
> +     if (i >= ARRAY_SIZE(fdp1_formats))
> +             return -EINVAL;
> +
> +     /* Format found */
> +     f->pixelformat = fdp1_formats[i].fourcc;
> +
> +     return 0;
> +}
> +
> +static int fdp1_enum_fmt_vid_cap(struct file *file, void *priv,
> +                              struct v4l2_fmtdesc *f)
> +{
> +     return fdp1_enum_fmt(f, FDP1_CAPTURE);
> +}
> +
> +static int fdp1_enum_fmt_vid_out(struct file *file, void *priv,
> +                                struct v4l2_fmtdesc *f)
> +{
> +     return fdp1_enum_fmt(f, FDP1_OUTPUT);
> +}
> +
> +static int fdp1_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
> +{
> +     struct fdp1_q_data *q_data;
> +     struct fdp1_ctx *ctx = fh_to_ctx(priv);
> +
> +     if (!v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type))
> +             return -EINVAL;
> +
> +     q_data = get_q_data(ctx, f->type);
> +     f->fmt.pix_mp = q_data->format;
> +
> +     return 0;
> +}
> +
> +static void fdp1_compute_stride(struct v4l2_pix_format_mplane *pix,
> +                             const struct fdp1_fmt *fmt)
> +{
> +     unsigned int i;
> +
> +     /* Compute and clamp the stride and image size. */
> +     for (i = 0; i < min_t(unsigned int, fmt->num_planes, 2U); ++i) {
> +             unsigned int hsub = i > 0 ? fmt->hsub : 1;
> +             unsigned int vsub = i > 0 ? fmt->vsub : 1;
> +              /* From VSP : TODO: Confirm alignment limits for FDP1 */
> +             unsigned int align = 128;
> +             unsigned int bpl;
> +
> +             bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
> +                           pix->width / hsub * fmt->bpp[i] / 8,
> +                           round_down(FDP1_MAX_STRIDE, align));
> +
> +             pix->plane_fmt[i].bytesperline = round_up(bpl, align);
> +             pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
> +                                         * pix->height / vsub;
> +
> +             memset(pix->plane_fmt[i].reserved, 0,
> +                    sizeof(pix->plane_fmt[i].reserved));
> +     }
> +
> +     if (fmt->num_planes == 3) {
> +             /* The two chroma planes must have the same stride. */
> +             pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
> +             pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
> +
> +             memset(pix->plane_fmt[2].reserved, 0,
> +                    sizeof(pix->plane_fmt[2].reserved));
> +     }
> +}
> +
> +static void fdp1_try_fmt_output(struct fdp1_ctx *ctx,
> +                             const struct fdp1_fmt **fmtinfo,
> +                             struct v4l2_pix_format_mplane *pix)
> +{
> +     const struct fdp1_fmt *fmt;
> +     unsigned int width;
> +     unsigned int height;
> +
> +     /* Validate the pixel format to ensure the output queue supports it. */
> +     fmt = fdp1_find_format(pix->pixelformat);
> +     if (!fmt || !(fmt->types & FDP1_OUTPUT))
> +             fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
> +
> +     if (fmtinfo)
> +             *fmtinfo = fmt;
> +
> +     pix->pixelformat = fmt->fourcc;
> +     pix->num_planes = fmt->num_planes;
> +
> +     /*
> +      * Progressive video and all interlaced field orders are acceptable.
> +      * Default to V4L2_FIELD_INTERLACED.
> +      */
> +     if (pix->field != V4L2_FIELD_NONE &&
> +         pix->field != V4L2_FIELD_ALTERNATE &&
> +         !V4L2_FIELD_HAS_BOTH(pix->field))
> +             pix->field = V4L2_FIELD_INTERLACED;
> +
> +     /*
> +      * The deinterlacer doesn't care about the colorspace, accept all values
> +      * and default to V4L2_COLORSPACE_SMPTE170M. The YUV to RGB conversion
> +      * at the output of the deinterlacer supports a subset of encodings and
> +      * quantization methods and will only be available when the colorspace
> +      * allows it.
> +      */
> +     if (pix->colorspace == V4L2_COLORSPACE_DEFAULT)
> +             pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
> +
> +     /*
> +      * Align the width and height for YUV 4:2:2 and 4:2:0 formats and clamp
> +      * them to the supported frame size range. The height boundary are
> +      * related to the full frame, divide them by two when the format passes
> +      * fields in separate buffers.
> +      */
> +     width = round_down(pix->width, fmt->hsub);
> +     pix->width = clamp(width, FDP1_MIN_W, FDP1_MAX_W);
> +
> +     height = round_down(pix->height, fmt->vsub);
> +     if (pix->field == V4L2_FIELD_ALTERNATE)
> +             pix->height = clamp(height, FDP1_MIN_H / 2, FDP1_MAX_H / 2);
> +     else
> +             pix->height = clamp(height, FDP1_MIN_H, FDP1_MAX_H);
> +
> +     fdp1_compute_stride(pix, fmt);
> +}
> +
> +static void fdp1_try_fmt_capture(struct fdp1_ctx *ctx,
> +                              const struct fdp1_fmt **fmtinfo,
> +                              struct v4l2_pix_format_mplane *pix)
> +{
> +     struct fdp1_q_data *src_data = &ctx->out_q;
> +     enum v4l2_colorspace colorspace;
> +     enum v4l2_ycbcr_encoding ycbcr_enc;
> +     enum v4l2_quantization quantization;
> +     const struct fdp1_fmt *fmt;
> +     bool allow_rgb;
> +
> +     /*
> +      * Validate the pixel format. We can only accept RGB output formats if
> +      * the input encoding and quantization are compatible with the format
> +      * conversions supported by the hardware. The supported combinations are
> +      *
> +      * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_LIM_RANGE
> +      * V4L2_YCBCR_ENC_601 + V4L2_QUANTIZATION_FULL_RANGE
> +      * V4L2_YCBCR_ENC_709 + V4L2_QUANTIZATION_LIM_RANGE
> +      */
> +     colorspace = src_data->format.colorspace;
> +
> +     ycbcr_enc = src_data->format.ycbcr_enc;
> +     if (ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT)
> +             ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(colorspace);
> +
> +     quantization = src_data->format.quantization;
> +     if (quantization == V4L2_QUANTIZATION_DEFAULT)
> +             quantization = V4L2_MAP_QUANTIZATION_DEFAULT(false, colorspace,
> +                                                          ycbcr_enc);
> +
> +     allow_rgb = ycbcr_enc == V4L2_YCBCR_ENC_601 ||
> +                 (ycbcr_enc == V4L2_YCBCR_ENC_709 &&
> +                  quantization == V4L2_QUANTIZATION_LIM_RANGE);
> +
> +     fmt = fdp1_find_format(pix->pixelformat);
> +     if (!fmt || (!allow_rgb && fdp1_fmt_is_rgb(fmt)))
> +             fmt = fdp1_find_format(V4L2_PIX_FMT_YUYV);
> +
> +     if (fmtinfo)
> +             *fmtinfo = fmt;
> +
> +     pix->pixelformat = fmt->fourcc;
> +     pix->num_planes = fmt->num_planes;
> +     pix->field = V4L2_FIELD_NONE;
> +
> +     /*
> +      * The colorspace on the capture queue is copied from the output queue
> +      * as the hardware can't change the colorspace. It can convert YCbCr to
> +      * RGB though, in which case the encoding and quantization are set to
> +      * default values as anything else wouldn't make sense.
> +      */
> +     pix->colorspace = src_data->format.colorspace;
> +     pix->xfer_func = src_data->format.xfer_func;
> +
> +     if (fdp1_fmt_is_rgb(fmt)) {
> +             pix->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
> +             pix->quantization = V4L2_QUANTIZATION_DEFAULT;
> +     } else {
> +             pix->ycbcr_enc = src_data->format.ycbcr_enc;
> +             pix->quantization = src_data->format.quantization;
> +     }
> +
> +     /*
> +      * The frame width is identical to the output queue, and the height is
> +      * either doubled or identical depending on whether the output queue
> +      * field order contains one or two fields per frame.
> +      */
> +     pix->width = src_data->format.width;
> +     if (src_data->format.field == V4L2_FIELD_ALTERNATE)
> +             pix->height = 2 * src_data->format.height;
> +     else
> +             pix->height = src_data->format.height;
> +
> +     fdp1_compute_stride(pix, fmt);
> +}
> +
> +static int fdp1_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
> +{
> +     struct fdp1_ctx *ctx = fh_to_ctx(priv);
> +
> +     if (f->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
> +             fdp1_try_fmt_output(ctx, NULL, &f->fmt.pix_mp);
> +     else
> +             fdp1_try_fmt_capture(ctx, NULL, &f->fmt.pix_mp);
> +
> +     dprintk(ctx->fdp1, "Try %s format: %4s (0x%08x) %ux%u field %u\n",
> +             V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
> +             (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
> +             f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
> +
> +     return 0;
> +}
> +
> +static void fdp1_set_format(struct fdp1_ctx *ctx,
> +                         struct v4l2_pix_format_mplane *pix,
> +                         enum v4l2_buf_type type)
> +{
> +     struct fdp1_q_data *q_data = get_q_data(ctx, type);
> +     const struct fdp1_fmt *fmtinfo;
> +
> +     if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE)
> +             fdp1_try_fmt_output(ctx, &fmtinfo, pix);
> +     else
> +             fdp1_try_fmt_capture(ctx, &fmtinfo, pix);
> +
> +     q_data->fmt = fmtinfo;
> +     q_data->format = *pix;
> +
> +     q_data->vsize = pix->height;
> +     if (pix->field != V4L2_FIELD_NONE)
> +             q_data->vsize /= 2;
> +
> +     q_data->stride_y = pix->plane_fmt[0].bytesperline;
> +     q_data->stride_c = pix->plane_fmt[1].bytesperline;
> +
> +     /* Adjust strides for interleaved buffers */
> +     if (pix->field == V4L2_FIELD_INTERLACED ||
> +         pix->field == V4L2_FIELD_INTERLACED_TB ||
> +         pix->field == V4L2_FIELD_INTERLACED_BT) {
> +             q_data->stride_y *= 2;
> +             q_data->stride_c *= 2;
> +     }
> +
> +     /* Propagate the format from the output node to the capture node. */
> +     if (type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
> +             struct fdp1_q_data *dst_data = &ctx->cap_q;
> +
> +             /*
> +              * Copy the format, clear the per-plane bytes per line and image
> +              * size, override the field and double the height if needed.
> +              */
> +             dst_data->format = q_data->format;
> +             memset(dst_data->format.plane_fmt, 0,
> +                    sizeof(dst_data->format.plane_fmt));
> +
> +             dst_data->format.field = V4L2_FIELD_NONE;
> +             if (pix->field == V4L2_FIELD_ALTERNATE)
> +                     dst_data->format.height *= 2;
> +
> +             fdp1_try_fmt_capture(ctx, &dst_data->fmt, &dst_data->format);
> +
> +             dst_data->vsize = dst_data->format.height;
> +             dst_data->stride_y = dst_data->format.plane_fmt[0].bytesperline;
> +             dst_data->stride_c = dst_data->format.plane_fmt[1].bytesperline;
> +     }
> +}
> +
> +static int fdp1_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
> +{
> +     struct fdp1_ctx *ctx = fh_to_ctx(priv);
> +     struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx;
> +     struct vb2_queue *vq = v4l2_m2m_get_vq(m2m_ctx, f->type);
> +
> +     if (vb2_is_busy(vq)) {
> +             v4l2_err(&ctx->fdp1->v4l2_dev, "%s queue busy\n", __func__);
> +             return -EBUSY;
> +     }
> +
> +     fdp1_set_format(ctx, &f->fmt.pix_mp, f->type);
> +
> +     dprintk(ctx->fdp1, "Set %s format: %4s (0x%08x) %ux%u field %u\n",
> +             V4L2_TYPE_IS_OUTPUT(f->type) ? "output" : "capture",
> +             (char *)&f->fmt.pix_mp.pixelformat, f->fmt.pix_mp.pixelformat,
> +             f->fmt.pix_mp.width, f->fmt.pix_mp.height, f->fmt.pix_mp.field);
> +
> +     return 0;
> +}
> +
> +static int fdp1_g_ctrl(struct v4l2_ctrl *ctrl)
> +{
> +     struct fdp1_ctx *ctx =
> +             container_of(ctrl->handler, struct fdp1_ctx, hdl);
> +     struct fdp1_q_data *src_q_data = &ctx->out_q;
> +
> +     switch (ctrl->id) {
> +     case V4L2_CID_MIN_BUFFERS_FOR_CAPTURE:
> +             if (V4L2_FIELD_HAS_BOTH(src_q_data->format.field))
> +                     ctrl->val = 2;
> +             else
> +                     ctrl->val = 1;
> +             return 0;
> +     }
> +
> +     return 1;
> +}
> +
> +static int fdp1_s_ctrl(struct v4l2_ctrl *ctrl)
> +{
> +     struct fdp1_ctx *ctx =
> +             container_of(ctrl->handler, struct fdp1_ctx, hdl);
> +
> +     switch (ctrl->id) {
> +     case V4L2_CID_ALPHA_COMPONENT:
> +             ctx->alpha = ctrl->val;
> +             break;
> +
> +     case V4L2_CID_DEINTERLACING_MODE:
> +             ctx->deint_mode = ctrl->val;
> +             break;
> +     }
> +
> +     return 0;
> +}
> +
> +static const struct v4l2_ctrl_ops fdp1_ctrl_ops = {
> +     .s_ctrl = fdp1_s_ctrl,
> +     .g_volatile_ctrl = fdp1_g_ctrl,
> +};
> +
> +static const char * const fdp1_ctrl_deint_menu[] = {
> +     "Progressive",
> +     "Adaptive 2D/3D",
> +     "Fixed 2D",
> +     "Fixed 3D",
> +     "Previous field",
> +     "Next field",
> +     NULL
> +};
> +
> +static const struct v4l2_ioctl_ops fdp1_ioctl_ops = {
> +     .vidioc_querycap        = fdp1_vidioc_querycap,
> +
> +     .vidioc_enum_fmt_vid_cap_mplane = fdp1_enum_fmt_vid_cap,
> +     .vidioc_enum_fmt_vid_out_mplane = fdp1_enum_fmt_vid_out,
> +     .vidioc_g_fmt_vid_cap_mplane    = fdp1_g_fmt,
> +     .vidioc_g_fmt_vid_out_mplane    = fdp1_g_fmt,
> +     .vidioc_try_fmt_vid_cap_mplane  = fdp1_try_fmt,
> +     .vidioc_try_fmt_vid_out_mplane  = fdp1_try_fmt,
> +     .vidioc_s_fmt_vid_cap_mplane    = fdp1_s_fmt,
> +     .vidioc_s_fmt_vid_out_mplane    = fdp1_s_fmt,
> +
> +     .vidioc_reqbufs         = v4l2_m2m_ioctl_reqbufs,
> +     .vidioc_querybuf        = v4l2_m2m_ioctl_querybuf,
> +     .vidioc_qbuf            = v4l2_m2m_ioctl_qbuf,
> +     .vidioc_dqbuf           = v4l2_m2m_ioctl_dqbuf,
> +     .vidioc_prepare_buf     = v4l2_m2m_ioctl_prepare_buf,
> +     .vidioc_create_bufs     = v4l2_m2m_ioctl_create_bufs,
> +     .vidioc_expbuf          = v4l2_m2m_ioctl_expbuf,
> +
> +     .vidioc_streamon        = v4l2_m2m_ioctl_streamon,
> +     .vidioc_streamoff       = v4l2_m2m_ioctl_streamoff,
> +
> +     .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
> +     .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
> +};
> +
> +/*
> + * Queue operations
> + */
> +
> +static int fdp1_queue_setup(struct vb2_queue *vq,
> +                             unsigned int *nbuffers, unsigned int *nplanes,
> +                             unsigned int sizes[],
> +                             struct device *alloc_ctxs[])
> +{
> +     struct fdp1_ctx *ctx = vb2_get_drv_priv(vq);
> +     struct fdp1_q_data *q_data;
> +     unsigned int i;
> +
> +     q_data = get_q_data(ctx, vq->type);
> +
> +     if (*nplanes) {
> +             if (*nplanes > FDP1_MAX_PLANES)
> +                     return -EINVAL;
> +
> +             return 0;
> +     }
> +
> +     *nplanes = q_data->format.num_planes;
> +
> +     for (i = 0; i < *nplanes; i++)
> +             sizes[i] = q_data->format.plane_fmt[i].sizeimage;
> +
> +     return 0;
> +}
> +
> +static void fdp1_buf_prepare_field(struct fdp1_q_data *q_data,
> +                                struct vb2_v4l2_buffer *vbuf,
> +                                unsigned int field_num)
> +{
> +     struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
> +     struct fdp1_field_buffer *fbuf = &buf->fields[field_num];
> +     unsigned int num_fields;
> +     unsigned int i;
> +
> +     num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
> +
> +     fbuf->vb = vbuf;
> +     fbuf->last_field = (field_num + 1) == num_fields;
> +
> +     for (i = 0; i < vbuf->vb2_buf.num_planes; ++i)
> +             fbuf->addrs[i] = vb2_dma_contig_plane_dma_addr(&vbuf->vb2_buf, 
> i);
> +
> +     switch (vbuf->field) {
> +     case V4L2_FIELD_INTERLACED:
> +             /*
> +              * Interlaced means bottom-top for 60Hz TV standards (NTSC) and
> +              * top-bottom for 50Hz. As TV standards are not applicable to
> +              * the mem-to-mem API, use the height as a heuristic.
> +              */
> +             fbuf->field = (q_data->format.height < 576) == field_num
> +                         ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
> +             break;
> +     case V4L2_FIELD_INTERLACED_TB:
> +     case V4L2_FIELD_SEQ_TB:
> +             fbuf->field = field_num ? V4L2_FIELD_BOTTOM : V4L2_FIELD_TOP;
> +             break;
> +     case V4L2_FIELD_INTERLACED_BT:
> +     case V4L2_FIELD_SEQ_BT:
> +             fbuf->field = field_num ? V4L2_FIELD_TOP : V4L2_FIELD_BOTTOM;
> +             break;
> +     default:
> +             fbuf->field = vbuf->field;
> +             break;
> +     }
> +
> +     /* Buffer is completed */
> +     if (!field_num)
> +             return;
> +
> +     /* Adjust buffer addresses for second field */
> +     switch (vbuf->field) {
> +     case V4L2_FIELD_INTERLACED:
> +     case V4L2_FIELD_INTERLACED_TB:
> +     case V4L2_FIELD_INTERLACED_BT:
> +             for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
> +                     fbuf->addrs[i] +=
> +                             (i == 0 ? q_data->stride_y : q_data->stride_c);
> +             break;
> +     case V4L2_FIELD_SEQ_TB:
> +     case V4L2_FIELD_SEQ_BT:
> +             for (i = 0; i < vbuf->vb2_buf.num_planes; i++)
> +                     fbuf->addrs[i] += q_data->vsize *
> +                             (i == 0 ? q_data->stride_y : q_data->stride_c);
> +             break;
> +     }
> +}
> +
> +static int fdp1_buf_prepare(struct vb2_buffer *vb)
> +{
> +     struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
> +     struct fdp1_q_data *q_data = get_q_data(ctx, vb->vb2_queue->type);
> +     struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
> +     struct fdp1_buffer *buf = to_fdp1_buffer(vbuf);
> +     unsigned int i;
> +
> +     if (V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)) {
> +             bool field_valid = true;
> +
> +             /* Validate the buffer field. */
> +             switch (q_data->format.field) {
> +             case V4L2_FIELD_NONE:
> +                     if (vbuf->field != V4L2_FIELD_NONE)
> +                             field_valid = false;
> +                     break;
> +
> +             case V4L2_FIELD_ALTERNATE:
> +                     if (vbuf->field != V4L2_FIELD_TOP &&
> +                         vbuf->field != V4L2_FIELD_BOTTOM)
> +                             field_valid = false;
> +                     break;
> +
> +             case V4L2_FIELD_INTERLACED:
> +             case V4L2_FIELD_SEQ_TB:
> +             case V4L2_FIELD_SEQ_BT:
> +             case V4L2_FIELD_INTERLACED_TB:
> +             case V4L2_FIELD_INTERLACED_BT:
> +                     if (vbuf->field != q_data->format.field)
> +                             field_valid = false;
> +                     break;
> +             }
> +
> +             if (!field_valid) {
> +                     dprintk(ctx->fdp1,
> +                             "buffer field %u invalid for format field %u\n",
> +                             vbuf->field, q_data->format.field);
> +                     return -EINVAL;
> +             }
> +     } else {
> +             vbuf->field = V4L2_FIELD_NONE;
> +     }
> +
> +     /* Validate the planes sizes. */
> +     for (i = 0; i < q_data->format.num_planes; i++) {
> +             unsigned long size = q_data->format.plane_fmt[i].sizeimage;
> +
> +             if (vb2_plane_size(vb, i) < size) {
> +                     dprintk(ctx->fdp1,
> +                             "data will not fit into plane [%u/%u] (%lu < 
> %lu)\n",
> +                             i, q_data->format.num_planes,
> +                             vb2_plane_size(vb, i), size);
> +                     return -EINVAL;
> +             }
> +
> +             /* We have known size formats all around */
> +             vb2_set_plane_payload(vb, i, size);
> +     }
> +
> +     buf->num_fields = V4L2_FIELD_HAS_BOTH(vbuf->field) ? 2 : 1;
> +     for (i = 0; i < buf->num_fields; ++i)
> +             fdp1_buf_prepare_field(q_data, vbuf, i);
> +
> +     return 0;
> +}
> +
> +static void fdp1_buf_queue(struct vb2_buffer *vb)
> +{
> +     struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
> +     struct fdp1_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
> +
> +     v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
> +}
> +
> +static int fdp1_start_streaming(struct vb2_queue *q, unsigned int count)
> +{
> +     struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
> +     struct fdp1_q_data *q_data = get_q_data(ctx, q->type);
> +
> +     if (V4L2_TYPE_IS_OUTPUT(q->type)) {
> +             /*
> +              * Force our deint_mode when we are progressive,
> +              * ignoring any setting on the device from the user,
> +              * Otherwise, lock in the requested de-interlace mode.
> +              */
> +             if (q_data->format.field == V4L2_FIELD_NONE)
> +                     ctx->deint_mode = FDP1_PROGRESSIVE;
> +
> +             if (ctx->deint_mode == FDP1_ADAPT2D3D) {
> +                     u32 stride;
> +                     dma_addr_t smsk_base;
> +                     const u32 bpp = 2; /* bytes per pixel */
> +
> +                     stride = round_up(q_data->format.width, 8);
> +
> +                     ctx->smsk_size = bpp * stride * q_data->vsize;
> +
> +                     ctx->smsk_cpu = dma_alloc_coherent(ctx->fdp1->dev,
> +                             ctx->smsk_size, &smsk_base, GFP_KERNEL);
> +
> +                     if (ctx->smsk_cpu == NULL) {
> +                             dprintk(ctx->fdp1, "Failed to alloc smsk\n");
> +                             return -ENOMEM;
> +                     }
> +
> +                     ctx->smsk_addr[0] = smsk_base;
> +                     ctx->smsk_addr[1] = smsk_base + (ctx->smsk_size/2);
> +             }
> +     }
> +
> +     return 0;
> +}
> +
> +static void fdp1_stop_streaming(struct vb2_queue *q)
> +{
> +     struct fdp1_ctx *ctx = vb2_get_drv_priv(q);
> +     struct vb2_v4l2_buffer *vbuf;
> +     unsigned long flags;
> +
> +     while (1) {
> +             if (V4L2_TYPE_IS_OUTPUT(q->type))
> +                     vbuf = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
> +             else
> +                     vbuf = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
> +             if (vbuf == NULL)
> +                     break;
> +             spin_lock_irqsave(&ctx->fdp1->irqlock, flags);
> +             v4l2_m2m_buf_done(vbuf, VB2_BUF_STATE_ERROR);
> +             spin_unlock_irqrestore(&ctx->fdp1->irqlock, flags);
> +     }
> +
> +     /* Empty Output queues */
> +     if (V4L2_TYPE_IS_OUTPUT(q->type)) {
> +             /* Empty our internal queues */
> +             struct fdp1_field_buffer *fbuf;
> +
> +             /* Free any queued buffers */
> +             fbuf = fdp1_dequeue_field(ctx);
> +             while (fbuf != NULL) {
> +                     fdp1_field_complete(ctx, fbuf);
> +                     fbuf = fdp1_dequeue_field(ctx);
> +             }
> +
> +             /* Free smsk_data */
> +             if (ctx->smsk_cpu) {
> +                     dma_free_coherent(ctx->fdp1->dev, ctx->smsk_size,
> +                                     ctx->smsk_cpu, ctx->smsk_addr[0]);
> +                     ctx->smsk_addr[0] = ctx->smsk_addr[1] = 0;
> +                     ctx->smsk_cpu = NULL;
> +             }
> +
> +             WARN(!list_empty(&ctx->fields_queue),
> +                             "Buffer queue not empty");
> +     } else {
> +             /* Empty Capture queues (Jobs) */
> +             struct fdp1_job *job;
> +
> +             job = get_queued_job(ctx->fdp1);
> +             while (job) {
> +                     if (FDP1_DEINT_MODE_USES_PREV(ctx->deint_mode))
> +                             fdp1_field_complete(ctx, job->previous);
> +                     else
> +                             fdp1_field_complete(ctx, job->active);
> +
> +                     v4l2_m2m_buf_done(job->dst->vb, VB2_BUF_STATE_ERROR);
> +                     job->dst = NULL;
> +
> +                     job = get_queued_job(ctx->fdp1);
> +             }
> +
> +             /* Free any held buffer in the ctx */
> +             fdp1_field_complete(ctx, ctx->previous);
> +
> +             WARN(!list_empty(&ctx->fdp1->queued_job_list),
> +                             "Queued Job List not empty");
> +
> +             WARN(!list_empty(&ctx->fdp1->hw_job_list),
> +                             "HW Job list not empty");
> +     }
> +}
> +
> +static struct vb2_ops fdp1_qops = {
> +     .queue_setup     = fdp1_queue_setup,
> +     .buf_prepare     = fdp1_buf_prepare,
> +     .buf_queue       = fdp1_buf_queue,
> +     .start_streaming = fdp1_start_streaming,
> +     .stop_streaming  = fdp1_stop_streaming,
> +     .wait_prepare    = vb2_ops_wait_prepare,
> +     .wait_finish     = vb2_ops_wait_finish,
> +};
> +
> +static int queue_init(void *priv, struct vb2_queue *src_vq,
> +                   struct vb2_queue *dst_vq)
> +{
> +     struct fdp1_ctx *ctx = priv;
> +     int ret;
> +
> +     src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
> +     src_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
> +     src_vq->drv_priv = ctx;
> +     src_vq->buf_struct_size = sizeof(struct fdp1_buffer);
> +     src_vq->ops = &fdp1_qops;
> +     src_vq->mem_ops = &vb2_dma_contig_memops;
> +     src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
> +     src_vq->lock = &ctx->fdp1->dev_mutex;
> +     src_vq->dev = ctx->fdp1->dev;
> +
> +     ret = vb2_queue_init(src_vq);
> +     if (ret)
> +             return ret;
> +
> +     dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
> +     dst_vq->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
> +     dst_vq->drv_priv = ctx;
> +     dst_vq->buf_struct_size = sizeof(struct fdp1_buffer);
> +     dst_vq->ops = &fdp1_qops;
> +     dst_vq->mem_ops = &vb2_dma_contig_memops;
> +     dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
> +     dst_vq->lock = &ctx->fdp1->dev_mutex;
> +     dst_vq->dev = ctx->fdp1->dev;
> +
> +     return vb2_queue_init(dst_vq);
> +}
> +
> +/*
> + * File operations
> + */
> +static int fdp1_open(struct file *file)
> +{
> +     struct fdp1_dev *fdp1 = video_drvdata(file);
> +     struct v4l2_pix_format_mplane format;
> +     struct fdp1_ctx *ctx = NULL;
> +     struct v4l2_ctrl *ctrl;
> +     int ret = 0;
> +
> +     if (mutex_lock_interruptible(&fdp1->dev_mutex))
> +             return -ERESTARTSYS;
> +
> +     ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
> +     if (!ctx) {
> +             ret = -ENOMEM;
> +             goto done;
> +     }
> +
> +     v4l2_fh_init(&ctx->fh, video_devdata(file));
> +     file->private_data = &ctx->fh;
> +     ctx->fdp1 = fdp1;
> +
> +     /* Initialise Queues */
> +     INIT_LIST_HEAD(&ctx->fields_queue);
> +
> +     ctx->translen = 1;
> +     ctx->sequence = 0;
> +
> +     /* Initialise controls */
> +
> +     v4l2_ctrl_handler_init(&ctx->hdl, 3);
> +     v4l2_ctrl_new_std_menu_items(&ctx->hdl, &fdp1_ctrl_ops,
> +                                  V4L2_CID_DEINTERLACING_MODE,
> +                                  FDP1_NEXTFIELD, BIT(0), FDP1_FIXED3D,
> +                                  fdp1_ctrl_deint_menu);
> +
> +     ctrl = v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
> +                     V4L2_CID_MIN_BUFFERS_FOR_CAPTURE, 1, 2, 1, 1);
> +     if (ctrl)
> +             ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
> +
> +     v4l2_ctrl_new_std(&ctx->hdl, &fdp1_ctrl_ops,
> +                       V4L2_CID_ALPHA_COMPONENT, 0, 255, 1, 255);
> +
> +     if (ctx->hdl.error) {
> +             ret = ctx->hdl.error;
> +             v4l2_ctrl_handler_free(&ctx->hdl);
> +             goto done;
> +     }
> +
> +     ctx->fh.ctrl_handler = &ctx->hdl;
> +     v4l2_ctrl_handler_setup(&ctx->hdl);
> +
> +     /* Configure default parameters. */
> +     memset(&format, 0, sizeof(format));
> +     fdp1_set_format(ctx, &format, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
> +
> +     ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(fdp1->m2m_dev, ctx, &queue_init);
> +
> +     if (IS_ERR(ctx->fh.m2m_ctx)) {
> +             ret = PTR_ERR(ctx->fh.m2m_ctx);
> +
> +             v4l2_ctrl_handler_free(&ctx->hdl);
> +             kfree(ctx);
> +             goto done;
> +     }
> +
> +     /* Perform any power management required */
> +     pm_runtime_get_sync(fdp1->dev);
> +
> +     v4l2_fh_add(&ctx->fh);
> +
> +     dprintk(fdp1, "Created instance: %p, m2m_ctx: %p\n",
> +             ctx, ctx->fh.m2m_ctx);
> +
> +done:
> +     mutex_unlock(&fdp1->dev_mutex);
> +     return ret;
> +}
> +
> +static int fdp1_release(struct file *file)
> +{
> +     struct fdp1_dev *fdp1 = video_drvdata(file);
> +     struct fdp1_ctx *ctx = fh_to_ctx(file->private_data);
> +
> +     dprintk(fdp1, "Releasing instance %p\n", ctx);
> +
> +     v4l2_fh_del(&ctx->fh);
> +     v4l2_fh_exit(&ctx->fh);
> +     v4l2_ctrl_handler_free(&ctx->hdl);
> +     mutex_lock(&fdp1->dev_mutex);
> +     v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
> +     mutex_unlock(&fdp1->dev_mutex);
> +     kfree(ctx);
> +
> +     pm_runtime_put(fdp1->dev);
> +
> +     return 0;
> +}
> +
> +static const struct v4l2_file_operations fdp1_fops = {
> +     .owner          = THIS_MODULE,
> +     .open           = fdp1_open,
> +     .release        = fdp1_release,
> +     .poll           = v4l2_m2m_fop_poll,
> +     .unlocked_ioctl = video_ioctl2,
> +     .mmap           = v4l2_m2m_fop_mmap,
> +};
> +
> +static const struct video_device fdp1_videodev = {
> +     .name           = DRIVER_NAME,
> +     .vfl_dir        = VFL_DIR_M2M,
> +     .fops           = &fdp1_fops,
> +     .device_caps    = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING,
> +     .ioctl_ops      = &fdp1_ioctl_ops,
> +     .minor          = -1,
> +     .release        = video_device_release_empty,
> +};
> +
> +static const struct v4l2_m2m_ops m2m_ops = {
> +     .device_run     = fdp1_m2m_device_run,
> +     .job_ready      = fdp1_m2m_job_ready,
> +     .job_abort      = fdp1_m2m_job_abort,
> +};
> +
> +static irqreturn_t fdp1_irq_handler(int irq, void *dev_id)
> +{
> +     struct fdp1_dev *fdp1 = dev_id;
> +     u32 int_status;
> +     u32 ctl_status;
> +     u32 vint_cnt;
> +     u32 cycles;
> +
> +     int_status = fdp1_read(fdp1, FD1_CTL_IRQSTA);
> +     cycles = fdp1_read(fdp1, FD1_CTL_VCYCLE_STAT);
> +     ctl_status = fdp1_read(fdp1, FD1_CTL_STATUS);
> +     vint_cnt = (ctl_status & FD1_CTL_STATUS_VINT_CNT_MASK) >>
> +                     FD1_CTL_STATUS_VINT_CNT_SHIFT;
> +
> +     /* Clear interrupts */
> +     fdp1_write(fdp1, ~(int_status) & FD1_CTL_IRQ_MASK, FD1_CTL_IRQSTA);
> +
> +     if (debug >= 2) {
> +             dprintk(fdp1, "IRQ: 0x%x %s%s%s\n", int_status,
> +                     int_status & FD1_CTL_IRQ_VERE ? "[Error]" : "[!E]",
> +                     int_status & FD1_CTL_IRQ_VINTE ? "[VSync]" : "[!V]",
> +                     int_status & FD1_CTL_IRQ_FREE ? "[FrameEnd]" : "[!F]");
> +
> +             dprintk(fdp1, "CycleStatus = %d (%dms)\n",
> +                     cycles, cycles/(fdp1->clk_rate/1000));
> +
> +             dprintk(fdp1,
> +                     "Control Status = 0x%08x : VINT_CNT = %d %s:%s:%s:%s\n",
> +                     ctl_status, vint_cnt,
> +                     ctl_status & FD1_CTL_STATUS_SGREGSET ? "RegSet" : "",
> +                     ctl_status & FD1_CTL_STATUS_SGVERR ? "Vsync Error" : "",
> +                     ctl_status & FD1_CTL_STATUS_SGFREND ? "FrameEnd" : "",
> +                     ctl_status & FD1_CTL_STATUS_BSY ? "Busy" : "");
> +             dprintk(fdp1, "***********************************\n");
> +     }
> +
> +     /* Spurious interrupt */
> +     if (!(FD1_CTL_IRQ_MASK & int_status))
> +             return IRQ_NONE;
> +
> +     /* Work completed, release the frame */
> +     if (FD1_CTL_IRQ_VERE & int_status)
> +             device_frame_end(fdp1, VB2_BUF_STATE_ERROR);
> +     else if (FD1_CTL_IRQ_FREE & int_status)
> +             device_frame_end(fdp1, VB2_BUF_STATE_DONE);
> +
> +     return IRQ_HANDLED;
> +}
> +
> +static int fdp1_probe(struct platform_device *pdev)
> +{
> +     struct fdp1_dev *fdp1;
> +     struct video_device *vfd;
> +     struct device_node *fcp_node;
> +     struct resource *res;
> +     struct clk *clk;
> +     unsigned int i;
> +
> +     int ret;
> +     int hw_version;
> +
> +     fdp1 = devm_kzalloc(&pdev->dev, sizeof(*fdp1), GFP_KERNEL);
> +     if (!fdp1)
> +             return -ENOMEM;
> +
> +     INIT_LIST_HEAD(&fdp1->free_job_list);
> +     INIT_LIST_HEAD(&fdp1->queued_job_list);
> +     INIT_LIST_HEAD(&fdp1->hw_job_list);
> +
> +     /* Initialise the jobs on the free list */
> +     for (i = 0; i < ARRAY_SIZE(fdp1->jobs); i++)
> +             list_add(&fdp1->jobs[i].list, &fdp1->free_job_list);
> +
> +     mutex_init(&fdp1->dev_mutex);
> +
> +     spin_lock_init(&fdp1->irqlock);
> +     spin_lock_init(&fdp1->device_process_lock);
> +     fdp1->dev = &pdev->dev;
> +     platform_set_drvdata(pdev, fdp1);
> +
> +     /* Memory-mapped registers */
> +     res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
> +     fdp1->regs = devm_ioremap_resource(&pdev->dev, res);
> +     if (IS_ERR(fdp1->regs))
> +             return PTR_ERR(fdp1->regs);
> +
> +     /* Interrupt service routine registration */
> +     fdp1->irq = ret = platform_get_irq(pdev, 0);
> +     if (ret < 0) {
> +             dev_err(&pdev->dev, "cannot find IRQ\n");
> +             return ret;
> +     }
> +
> +     ret = devm_request_irq(&pdev->dev, fdp1->irq, fdp1_irq_handler, 0,
> +                            dev_name(&pdev->dev), fdp1);
> +     if (ret) {
> +             dev_err(&pdev->dev, "cannot claim IRQ %d\n", fdp1->irq);
> +             return ret;
> +     }
> +
> +     /* FCP */
> +     fcp_node = of_parse_phandle(pdev->dev.of_node, "renesas,fcp", 0);
> +     if (fcp_node) {
> +             fdp1->fcp = rcar_fcp_get(fcp_node);
> +             of_node_put(fcp_node);
> +             if (IS_ERR(fdp1->fcp)) {
> +                     dev_err(&pdev->dev, "FCP not found (%ld)\n",
> +                             PTR_ERR(fdp1->fcp));
> +                     return PTR_ERR(fdp1->fcp);
> +             }
> +     }
> +
> +     /* Determine our clock rate */
> +     clk = clk_get(&pdev->dev, NULL);
> +     if (IS_ERR(clk))
> +             return PTR_ERR(clk);
> +
> +     fdp1->clk_rate = clk_get_rate(clk);
> +     clk_put(clk);
> +
> +     /* V4L2 device registration */
> +     ret = v4l2_device_register(&pdev->dev, &fdp1->v4l2_dev);
> +     if (ret) {
> +             v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
> +             return ret;
> +     }
> +
> +     /* M2M registration */
> +     fdp1->m2m_dev = v4l2_m2m_init(&m2m_ops);
> +     if (IS_ERR(fdp1->m2m_dev)) {
> +             v4l2_err(&fdp1->v4l2_dev, "Failed to init mem2mem device\n");
> +             ret = PTR_ERR(fdp1->m2m_dev);
> +             goto unreg_dev;
> +     }
> +
> +     /* Video registration */
> +     fdp1->vfd = fdp1_videodev;
> +     vfd = &fdp1->vfd;
> +     vfd->lock = &fdp1->dev_mutex;
> +     vfd->v4l2_dev = &fdp1->v4l2_dev;
> +     video_set_drvdata(vfd, fdp1);
> +     strlcpy(vfd->name, fdp1_videodev.name, sizeof(vfd->name));
> +
> +     ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
> +     if (ret) {
> +             v4l2_err(&fdp1->v4l2_dev, "Failed to register video device\n");
> +             goto release_m2m;
> +     }
> +
> +     v4l2_info(&fdp1->v4l2_dev,
> +                     "Device registered as /dev/video%d\n", vfd->num);
> +
> +     /* Power up the cells to read HW */
> +     pm_runtime_enable(&pdev->dev);
> +     pm_runtime_get_sync(fdp1->dev);
> +
> +     hw_version = fdp1_read(fdp1, FD1_IP_INTDATA);
> +     switch (hw_version) {
> +     case FD1_IP_H3:
> +             dprintk(fdp1, "FDP1 Version R-Car H3\n");
> +             break;
> +     case FD1_IP_M3W:
> +             dprintk(fdp1, "FDP1 Version R-Car M3-W\n");
> +             break;
> +     default:
> +             dev_err(fdp1->dev, "FDP1 Unidentifiable (0x%08x)\n",
> +                             hw_version);
> +     }
> +
> +     /* Allow the hw to sleep until an open call puts it to use */
> +     pm_runtime_put(fdp1->dev);
> +
> +     return 0;
> +
> +release_m2m:
> +     v4l2_m2m_release(fdp1->m2m_dev);
> +
> +unreg_dev:
> +     v4l2_device_unregister(&fdp1->v4l2_dev);
> +
> +     return ret;
> +}
> +
> +static int fdp1_remove(struct platform_device *pdev)
> +{
> +     struct fdp1_dev *fdp1 = platform_get_drvdata(pdev);
> +
> +     v4l2_m2m_release(fdp1->m2m_dev);
> +     video_unregister_device(&fdp1->vfd);
> +     v4l2_device_unregister(&fdp1->v4l2_dev);
> +     pm_runtime_disable(&pdev->dev);
> +
> +     return 0;
> +}
> +
> +static int fdp1_pm_runtime_suspend(struct device *dev)
> +{
> +     struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
> +
> +     rcar_fcp_disable(fdp1->fcp);
> +
> +     return 0;
> +}
> +
> +static int fdp1_pm_runtime_resume(struct device *dev)
> +{
> +     struct fdp1_dev *fdp1 = dev_get_drvdata(dev);
> +
> +     /* Program in the static LUTs */
> +     fdp1_set_lut(fdp1);
> +
> +     return rcar_fcp_enable(fdp1->fcp);
> +}
> +
> +static const struct dev_pm_ops fdp1_pm_ops = {
> +     SET_RUNTIME_PM_OPS(fdp1_pm_runtime_suspend,
> +                        fdp1_pm_runtime_resume,
> +                        NULL)
> +};
> +
> +static const struct of_device_id fdp1_dt_ids[] = {
> +     { .compatible = "renesas,fdp1" },
> +     { },
> +};
> +MODULE_DEVICE_TABLE(of, fdp1_dt_ids);
> +
> +static struct platform_driver fdp1_pdrv = {
> +     .probe          = fdp1_probe,
> +     .remove         = fdp1_remove,
> +     .driver         = {
> +             .name   = DRIVER_NAME,
> +             .of_match_table = fdp1_dt_ids,
> +             .pm     = &fdp1_pm_ops,
> +     },
> +};
> +
> +module_platform_driver(fdp1_pdrv);
> +
> +MODULE_DESCRIPTION("Renesas R-Car Fine Display Processor Driver");
> +MODULE_AUTHOR("Kieran Bingham <kie...@bingham.xyz>");
> +MODULE_LICENSE("GPL");
> +MODULE_ALIAS("platform:" DRIVER_NAME);
> 

Reply via email to