Re: [PATCH 1/2] powerpc: sstep: Fix load and update instructions

2020-11-26 Thread Ravi Bangoria




On 11/19/20 11:11 AM, Sandipan Das wrote:

The Power ISA says that the fixed-point load and update
instructions must neither use R0 for the base address (RA)
nor have the destination (RT) and the base address (RA) as
the same register. In these cases, the instruction is
invalid. This applies to the following instructions.
   * Load Byte and Zero with Update (lbzu)
   * Load Byte and Zero with Update Indexed (lbzux)
   * Load Halfword and Zero with Update (lhzu)
   * Load Halfword and Zero with Update Indexed (lhzux)
   * Load Halfword Algebraic with Update (lhau)
   * Load Halfword Algebraic with Update Indexed (lhaux)
   * Load Word and Zero with Update (lwzu)
   * Load Word and Zero with Update Indexed (lwzux)
   * Load Word Algebraic with Update Indexed (lwaux)
   * Load Doubleword with Update (ldu)
   * Load Doubleword with Update Indexed (ldux)

However, the following behaviour is observed using some
invalid opcodes where RA = RT.

An userspace program using an invalid instruction word like
0xe9ce0001, i.e. "ldu r14, 0(r14)", runs and exits without
getting terminated abruptly. The instruction performs the
load operation but does not write the effective address to
the base address register. Attaching an uprobe at that
instruction's address results in emulation which writes the
effective address to the base register. Thus, the final value
of the base address register is different.

To remove any inconsistencies, this adds an additional check
for the aforementioned instructions to make sure that they
are treated as unknown by the emulation infrastructure when
RA = 0 or RA = RT. The kernel will then fallback to executing
the instruction on hardware.

Signed-off-by: Sandipan Das 


For the series:
Reviewed-by: Ravi Bangoria 


Re: [PATCH 1/2] powerpc: sstep: Fix load and update instructions

2020-11-26 Thread Sandipan Das
Hi,

On 25/11/20 3:39 pm, Ravi Bangoria wrote:
> 
>> diff --git a/arch/powerpc/lib/sstep.c b/arch/powerpc/lib/sstep.c
>> index 855457ed09b5..25a5436be6c6 100644
>> --- a/arch/powerpc/lib/sstep.c
>> +++ b/arch/powerpc/lib/sstep.c
>> @@ -2157,11 +2157,15 @@ int analyse_instr(struct instruction_op *op, const 
>> struct pt_regs *regs,
>>     case 23:    /* lwzx */
>>   case 55:    /* lwzux */
>> +    if (u && (ra == 0 || ra == rd))
>> +    return -1;
> 
> I guess you also need to split case 23 and 55?
> 

'u' takes care of that. It will be set for lwzux but not lwzx.

- Sandipan


Re: [PATCH 1/2] powerpc: sstep: Fix load and update instructions

2020-11-25 Thread Ravi Bangoria




diff --git a/arch/powerpc/lib/sstep.c b/arch/powerpc/lib/sstep.c
index 855457ed09b5..25a5436be6c6 100644
--- a/arch/powerpc/lib/sstep.c
+++ b/arch/powerpc/lib/sstep.c
@@ -2157,11 +2157,15 @@ int analyse_instr(struct instruction_op *op, const 
struct pt_regs *regs,
  
  		case 23:	/* lwzx */

case 55:/* lwzux */
+   if (u && (ra == 0 || ra == rd))
+   return -1;


I guess you also need to split case 23 and 55?

- Ravi


[PATCH 1/2] powerpc: sstep: Fix load and update instructions

2020-11-18 Thread Sandipan Das
The Power ISA says that the fixed-point load and update
instructions must neither use R0 for the base address (RA)
nor have the destination (RT) and the base address (RA) as
the same register. In these cases, the instruction is
invalid. This applies to the following instructions.
  * Load Byte and Zero with Update (lbzu)
  * Load Byte and Zero with Update Indexed (lbzux)
  * Load Halfword and Zero with Update (lhzu)
  * Load Halfword and Zero with Update Indexed (lhzux)
  * Load Halfword Algebraic with Update (lhau)
  * Load Halfword Algebraic with Update Indexed (lhaux)
  * Load Word and Zero with Update (lwzu)
  * Load Word and Zero with Update Indexed (lwzux)
  * Load Word Algebraic with Update Indexed (lwaux)
  * Load Doubleword with Update (ldu)
  * Load Doubleword with Update Indexed (ldux)

However, the following behaviour is observed using some
invalid opcodes where RA = RT.

An userspace program using an invalid instruction word like
0xe9ce0001, i.e. "ldu r14, 0(r14)", runs and exits without
getting terminated abruptly. The instruction performs the
load operation but does not write the effective address to
the base address register. Attaching an uprobe at that
instruction's address results in emulation which writes the
effective address to the base register. Thus, the final value
of the base address register is different.

To remove any inconsistencies, this adds an additional check
for the aforementioned instructions to make sure that they
are treated as unknown by the emulation infrastructure when
RA = 0 or RA = RT. The kernel will then fallback to executing
the instruction on hardware.

Signed-off-by: Sandipan Das 
---
 arch/powerpc/lib/sstep.c | 22 ++
 1 file changed, 22 insertions(+)

diff --git a/arch/powerpc/lib/sstep.c b/arch/powerpc/lib/sstep.c
index 855457ed09b5..25a5436be6c6 100644
--- a/arch/powerpc/lib/sstep.c
+++ b/arch/powerpc/lib/sstep.c
@@ -2157,11 +2157,15 @@ int analyse_instr(struct instruction_op *op, const 
struct pt_regs *regs,
 
case 23:/* lwzx */
case 55:/* lwzux */
+   if (u && (ra == 0 || ra == rd))
+   return -1;
op->type = MKOP(LOAD, u, 4);
break;
 
case 87:/* lbzx */
case 119:   /* lbzux */
+   if (u && (ra == 0 || ra == rd))
+   return -1;
op->type = MKOP(LOAD, u, 1);
break;
 
@@ -2215,6 +2219,8 @@ int analyse_instr(struct instruction_op *op, const struct 
pt_regs *regs,
 #ifdef __powerpc64__
case 21:/* ldx */
case 53:/* ldux */
+   if (u && (ra == 0 || ra == rd))
+   return -1;
op->type = MKOP(LOAD, u, 8);
break;
 
@@ -2236,18 +2242,24 @@ int analyse_instr(struct instruction_op *op, const 
struct pt_regs *regs,
 
case 279:   /* lhzx */
case 311:   /* lhzux */
+   if (u && (ra == 0 || ra == rd))
+   return -1;
op->type = MKOP(LOAD, u, 2);
break;
 
 #ifdef __powerpc64__
case 341:   /* lwax */
case 373:   /* lwaux */
+   if (u && (ra == 0 || ra == rd))
+   return -1;
op->type = MKOP(LOAD, SIGNEXT | u, 4);
break;
 #endif
 
case 343:   /* lhax */
case 375:   /* lhaux */
+   if (u && (ra == 0 || ra == rd))
+   return -1;
op->type = MKOP(LOAD, SIGNEXT | u, 2);
break;
 
@@ -2540,12 +2552,16 @@ int analyse_instr(struct instruction_op *op, const 
struct pt_regs *regs,
 
case 32:/* lwz */
case 33:/* lwzu */
+   if (u && (ra == 0 || ra == rd))
+   return -1;
op->type = MKOP(LOAD, u, 4);
op->ea = dform_ea(word, regs);
break;
 
case 34:/* lbz */
case 35:/* lbzu */
+   if (u && (ra == 0 || ra == rd))
+   return -1;
op->type = MKOP(LOAD, u, 1);
op->ea = dform_ea(word, regs);
break;
@@ -2564,12 +2580,16 @@ int analyse_instr(struct instruction_op *op, const 
struct pt_regs *regs,
 
case 40:/* lhz */
case 41:/* lhzu */
+   if (u && (ra == 0 || ra == rd))
+   return -1;
op->type = MKOP(LOAD, u, 2);
op->ea = dform_ea(word, regs);
break;
 
case 42:/* lha */
case 43:/* lhau */
+