How to Get symmetric plotting in pylab.... i tried this code: # -*- coding: utf-8 -*-
""" Created on Sat Mar 10 20:33:32 2012 @author: fajar """ from numpy import linspace, meshgrid, array import matplotlib.pyplot as pl import matplotlib.ticker as tc from scipy.integrate import odeint # membuat vektor u = linspace(-5,5,25) v = linspace(-5,5,25) U,V = meshgrid(u,v) def fu(u,v): return 2*u-2*v def fv(u,v): return 2*u-3*v FU = fu(U,V) FV = fv(U,V) # sistem Persamaan: def g(x,t): y1 = 2*x[0]-1*x[1] y2 = 1*x[0]-2*x[1] return [y1, y2] time = linspace(-1,-.6,100) con = array([[1,2],[1.5,-3],[-1.5,3],[-1.5,-3]]) pl.figure() Q = pl.quiver(U,V,FU,FV, units='height', hold=True) #sol = odeint(g, con[0], time) #pl.plot(sol[:,0], sol[:,1], linewidth=2.1 , color='y') # #sol = odeint(g, con[1], time) #pl.plot(sol[:,0], sol[:,1], linewidth=2.1,color='b') # #sol = odeint(g, con[2], time) #pl.plot(sol[:,0], sol[:,1], linewidth=2.1 , color='m') # #sol = odeint(g, con[3], time) #pl.plot(sol[:,0], sol[:,1], linewidth=2.1 , color='r') # pl.autoscale(enable=True,axis='Both', tight=True) #tc.AutoLocator() tc.MaxNLocator(9,symmetric=True) #pl.xlabel('u', weight='bold') #pl.ylabel('v', weight='bold') #pl.title('u\'=u dan v\'=-2v',weight='bold') #pl.autoscale()z pl.show() --- but i get picture like in this attach... (aa.png) what i need is to Make side of figure stright... not oblique... like this attach (ab.png)... with coresponding code: # -*- coding: utf-8 -*- """ Created on Sat Mar 10 20:33:32 2012 @author: fajar """ from numpy import linspace, meshgrid, array import pylab as pl from scipy.integrate import odeint # membuat vektor u = linspace(-5,5,21) v = linspace(-5,5,21) U,V = meshgrid(u,v) def fu(u,v):return u def fv(u,v):return -2*v FU = fu(U,V) FV = fv(U,V) # sistem Persamaan: def g(x,t): y1 = x[0] y2 = -2*x[1] return [y1, y2] time = linspace(0,1,100) con = array([[1.5,3],[1.5,-3],[-1.5,3],[-1.5,-3]]) pl.figure() Q = pl.quiver(U,V,FU,FV, units='height', hold=True) sol = odeint(g, con[0], time) pl.plot(sol[:,0], sol[:,1], linewidth=2.1 , color='y') sol = odeint(g, con[1], time) pl.plot(sol[:,0], sol[:,1], linewidth=2.1,color='b') sol = odeint(g, con[2], time) pl.plot(sol[:,0], sol[:,1], linewidth=2.1 , color='m') sol = odeint(g, con[3], time) pl.plot(sol[:,0], sol[:,1], linewidth=2.1 , color='r') pl.autoscale(enable=True,axis='Both', tight =True) pl.xlabel('u', weight='bold') pl.ylabel('v', weight='bold') pl.title('u\'=u dan v\'=-2v',weight='bold') pl.show() --i'm sorry, i didn't well to speak english, but i guess you know what mean... thanks before....
aa.png ab.png
------------------------------------------------------------------------------ Virtualization & Cloud Management Using Capacity Planning Cloud computing makes use of virtualization - but cloud computing also focuses on allowing computing to be delivered as a service. http://www.accelacomm.com/jaw/sfnl/114/51521223/
_______________________________________________ Matplotlib-users mailing list Matplotlib-users@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/matplotlib-users