The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 1 1 1 1 1 1 X 1 1 1 X X 1 1 X 1 1 1 1 1 1 1
0 X 0 0 0 0 0 0 0 0 0 0 0 0 X 2X 2X X 2X 2X 2X X X 2X X 2X 0 2X X 0 2X 2X X X 2X 2X 2X 0 X 0 2X X 0 2X 2X X 2X 2X 0 X 0 0 2X X X 0 2X 0 0 0 X 2X 2X 0 2X X 0 2X 2X X 2X 0 X X X 2X 0 X X 0 2X 0 2X 0 0
0 0 X 0 0 0 0 0 0 0 0 X 2X 2X 2X 2X 0 X 0 X X 2X X 2X 0 X 2X 0 2X 0 0 X 0 0 2X X 2X X X 2X X X 2X 2X 0 X X 0 X X X 2X X 0 X 2X 2X X 2X 2X X X X 2X 0 2X 2X X 2X 0 2X 0 X 2X X 2X 2X X 2X 2X 0 2X 0 X 0
0 0 0 X 0 0 0 0 X 2X 2X 2X 0 0 X 0 X 2X X 2X 2X 2X 2X 0 0 0 2X 2X 0 0 2X 2X 2X 0 0 X 2X 2X X 2X 0 X 2X X X X X 2X 2X 0 X X X 2X X 2X X 0 2X X 2X X X 0 2X 2X 2X 2X X X 0 0 X X 2X X 2X 2X X 2X 0 X X 2X 0
0 0 0 0 X 0 0 X 2X 0 2X 0 0 2X 2X X X X 2X X 0 2X X 2X X 0 X 2X 0 X 0 0 2X 2X X 2X 0 0 0 0 2X 2X X X 0 X 2X X 0 X 2X X X X X 2X X X 0 X 2X 0 0 0 0 X 2X 0 0 2X 2X 0 2X 2X X 0 0 0 0 2X 2X X 2X X 0
0 0 0 0 0 X 0 2X 2X X 0 2X 2X 2X 2X 2X 2X 0 X 0 0 2X 2X 0 2X X 2X 0 0 X 0 X 2X 2X 2X 2X X 2X 0 X X 2X 2X X 2X 0 0 0 0 0 2X 2X 2X 0 2X 2X 0 X 2X 0 2X 0 0 X X X 0 X 2X 2X 2X X X 2X 0 X 0 0 X 0 X X X X 0
0 0 0 0 0 0 X 2X 2X 2X 2X 2X 2X X X X 0 2X 0 0 X 0 2X 2X 2X 0 X X 0 0 2X 0 X 2X 0 2X 0 X 0 X 2X 2X 0 0 2X X 2X 2X 0 2X 0 X 2X X 0 X 2X X 0 0 2X 0 X 0 2X 2X 0 2X 0 0 0 2X 2X X 0 2X X 2X 2X 2X X X X X 0
generates a code of length 85 over Z3[X]/(X^2) who´s minimum homogenous weight is 150.
Homogenous weight enumerator: w(x)=1x^0+40x^150+118x^153+212x^156+218x^159+18x^160+244x^162+180x^163+192x^165+720x^166+162x^168+1440x^169+150x^171+1440x^172+150x^174+576x^175+154x^177+120x^180+102x^183+66x^186+70x^189+80x^192+52x^195+24x^198+20x^201+8x^204+2x^207+2x^240
The gray image is a linear code over GF(3) with n=255, k=8 and d=150.
This code was found by Heurico 1.16 in 1.78 seconds.