Re: [NTG-context] startcombination alignment problem

2009-06-11 Thread Xan

En/na Wolfgang Schuster ha escrit:


Am 10.06.2009 um 18:26 schrieb Xan:


Hi,

I want to put three graphics by this way:

[graphic 1] [graphic 2]
[graphic 3]

where graphic 3 is centered.

I use combination, but graphic 3 puts me in left
[graphic 1] [graphic 2]
[graphic 3]

How can I solve that?


The same question was asked in the past by someone else and your 
should find it
together with the answer in the mail archive, search for 
\startcombination

or \bTD[nx=2] ...

Wolfgang

Thanks Wolfgang for your answer. I use google and I not found it, But I 
solve that with nested combinations.


Xan.
___
If your question is of interest to others as well, please add an entry to the 
Wiki!

maillist : ntg-context@ntg.nl / http://www.ntg.nl/mailman/listinfo/ntg-context
webpage  : http://www.pragma-ade.nl / http://tex.aanhet.net
archive  : https://foundry.supelec.fr/projects/contextrev/
wiki : http://contextgarden.net
___


[NTG-context] startcombination alignment problem

2009-06-10 Thread Xan

Hi,

I want to put three graphics by this way:

[graphic 1] [graphic 2]
 [graphic 3]

where graphic 3 is centered.

I use combination, but graphic 3 puts me in left
[graphic 1] [graphic 2]
[graphic 3]

How can I solve that?
Thanks in advance,
Xan.

PS: Please, CCme. I put the code:

\placefigure
 [here]
 [figura-area]
 {Camins sobre $w$}
{\startcombination[2*1]
{ \starttikzpicture[scale=1]
% Els punts
\filldraw (0,-4) circle (2pt);
\filldraw (0.4216,3.9603) circle (2pt); % primer punt: avaluo ({3*sin(\t 
r)},{4*cos(\t r)}); a t = 0.141
\filldraw (-0.4216,3.9603) circle (2pt); % primer punt: avaluo 
({3*sin(\t r)},{4*cos(\t r)}); a t = -0.141


% Les línies entre els punts
\draw (-0.4216,3.9603) -- (0.4216,3.9603);
\draw plot[domain=-3.141:-0.141,smooth,variable=\t] ({3*sin(\t 
r)},{4*cos(\t r)});
\draw plot[domain=0.141:3.141,smooth,variable=\t] ({3*sin(\t 
r)},{4*cos(\t r)});

\filldraw (0,-4) circle (2pt); % perquè me quedi el punt damunt.

% Els combings
% Dibuixo:
% amb y la línia recta que uneix els dos punts, directament
% per x faig un funció del sinus (sin nx + ax = k)
\draw plot[domain=0:0.4216,smooth,variable=\t] ({-0.857727*\t -sin 
(7.31228*\t r) },{18.8812*\t -4 });
\draw plot[domain=0:0.4216,smooth,variable=\t] ({+0.857727*\t +sin 
(7.31228*\t r) },{18.8812*\t -4 });


% el sentit d'omega
\draw[decorate,decoration={markings,mark=at position .9 with 
{\arrow[blue,line width=1mm]{}}}] 
plot[domain=-3.141:3.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t r)});


% Els punts de les cel·les
% Calcul els combings per a y= 0 i y=1
\filldraw (-1.181475, 0) circle (2pt);
\filldraw (1.181475, 0) circle (2pt);
%\filldraw (1.161048, 1) circle (2pt);
%\filldraw (-1.161048, 1) circle (2pt);

% Els noms
\draw (0, -4.3) node {$1 \in G$};
\draw (2.5, -3) node {$w$};
\draw (-1.8, -0.3) node {$\sigma_{i+1}(j)$};
\draw (1.65, -0.3) node {$\sigma_i(j)$};

% Els noms dels camins
%\draw (1, 0.3) node {$a$};
%\draw (3, 0.3) node {$b$};
%\draw (3.7, 1) node {$c$};
%\draw (3, 1.7) node {$d$};
%\draw (1, 1.7) node {$e$};
%\draw (0.3, 1) node {$f$};
%\draw (2.3, 1) node {$g$};

% PROVES
%\draw[out=45,in=-45] (0,0) to (0.5,8);
%\draw[color=blue,-] (0,0) .. controls (0.1,2) .. (0.2,3) .. controls 
(0.3,4) and (0.4,6) .. (0.5,8);

%\draw (0,0) arc (-90:90:3 and 4);
%\draw (0,0) arc (270:90:3 and 4);
%\draw[color=green] plot[domain=-3.141:3.141,smooth,variable=\t] 
({4*sin(\t + (.1 * rand) r)},{4*cos(\t r)});

%\draw (0,0) arc (-90:81.82:2 and 4);
%\draw[decorate,decoration={random steps,segment length=2mm, 
amplitude=2pt}] (0,0) arc (-90:97.18:3.5 and 4);

%\draw[very thin,color=gray] (-5.1,-5.1) grid [step=1] (5.9,5.9);
%\draw[-] (-5.2,0) -- (6.2,0) node[right] {$x$};
%\draw[-] (0,-5.2) -- (0,5.2) node[above] {$y$};
% r = \frac{-1}{3} x + 3
%\filldraw (3,2) circle (2pt);
%\filldraw (-3,4) circle (2pt);
%\draw (-6,5) -- (6,1);
%\draw (1, 3.5) node {$r$};
\stoptikzpicture} {Les seccions de $\pi(w(i))$.}
{ \starttikzpicture[scale=1]
% Els punts
\filldraw (0,-4) circle (2pt);
\filldraw (0.4216,3.9603) circle (2pt); % primer punt: avaluo ({3*sin(\t 
r)},{4*cos(\t r)}); a t = 0.141
\filldraw (-0.4216,3.9603) circle (2pt); % primer punt: avaluo 
({3*sin(\t r)},{4*cos(\t r)}); a t = -0.141


% Les línies entre els punts
\draw (-0.4216,3.9603) -- (0.4216,3.9603);
\draw plot[domain=-3.141:-0.141,smooth,variable=\t] ({3*sin(\t 
r)},{4*cos(\t r)});
\draw plot[domain=0.141:3.141,smooth,variable=\t] ({3*sin(\t 
r)},{4*cos(\t r)});

\filldraw (0,-4) circle (2pt); % perquè me quedi el punt damunt.

% Els combings
% Dibuixo:
% amb y la línia recta que uneix els dos punts, directament
% per x faig un funció del sinus (sin nx + ax = k)
\draw plot[domain=0:0.4216,smooth,variable=\t] ({-0.857727*\t -sin 
(7.31228*\t r) },{18.8812*\t -4 });
\draw plot[domain=0:0.4216,smooth,variable=\t] ({+0.857727*\t +sin 
(7.31228*\t r) },{18.8812*\t -4 });


% el sentit d'omega
\draw[decorate,decoration={markings,mark=at position .9 with 
{\arrow[blue,line width=1mm]{}}}] 
plot[domain=-3.141:3.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t r)});


% Els punts de les cel·les
% Calcul els combings per a y= 0 i y=1
\filldraw (-1.181475, 0) circle (2pt);
\filldraw (1.181475, 0) circle (2pt);
%\filldraw (1.161048, 1) circle (2pt);
%\filldraw (-1.161048, 1) circle (2pt);

% Els noms
\draw (0, -4.3) node {$1 \in G$};
\draw (2.5, -3) node {$w$};
\draw (-1.8, -0.3) node {$\sigma_{i+1}(j)$};
\draw (1.65, -0.3) node {$\sigma_i(j)$};

% Els noms dels camins
%\draw (1, 0.3) node {$a$};
%\draw (3, 0.3) node {$b$};
%\draw (3.7, 1) node {$c$};
%\draw (3, 1.7) node {$d$};
%\draw (1, 1.7) node {$e$};
%\draw (0.3, 1) node {$f$};
%\draw (2.3, 1) node {$g$};
\stoptikzpicture} {El camí $\theta_{i,j}$.}
  \stopcombination

\startcombination[1*1]
{ \starttikzpicture[scale=1]
% Els punts
\filldraw (0,-4) circle (2pt);
\filldraw (0.4216,3.9603) circle (2pt); % primer punt: avaluo ({3*sin(\t 
r)},{4*cos(\t r)}); a t = 0.141
\filldraw (-0.4216,3.9603) 

Re: [NTG-context] startcombination alignment problem

2009-06-10 Thread Xan

Hey, I know now: Nested combinations:
combination[1*2]
 combination[2*1]
 combination[1*1]

(this is only a sketch)

Thanks,
Xan.

En/na Xan ha escrit:

Hi,

I want to put three graphics by this way:

[graphic 1] [graphic 2]
 [graphic 3]

where graphic 3 is centered.

I use combination, but graphic 3 puts me in left
[graphic 1] [graphic 2]
[graphic 3]

How can I solve that?
Thanks in advance,
Xan.

PS: Please, CCme. I put the code:

\placefigure
 [here]
 [figura-area]
 {Camins sobre $w$}
{\startcombination[2*1]
{ \starttikzpicture[scale=1]
% Els punts
\filldraw (0,-4) circle (2pt);
\filldraw (0.4216,3.9603) circle (2pt); % primer punt: avaluo 
({3*sin(\t r)},{4*cos(\t r)}); a t = 0.141
\filldraw (-0.4216,3.9603) circle (2pt); % primer punt: avaluo 
({3*sin(\t r)},{4*cos(\t r)}); a t = -0.141


% Les línies entre els punts
\draw (-0.4216,3.9603) -- (0.4216,3.9603);
\draw plot[domain=-3.141:-0.141,smooth,variable=\t] ({3*sin(\t 
r)},{4*cos(\t r)});
\draw plot[domain=0.141:3.141,smooth,variable=\t] ({3*sin(\t 
r)},{4*cos(\t r)});

\filldraw (0,-4) circle (2pt); % perquè me quedi el punt damunt.

% Els combings
% Dibuixo:
% amb y la línia recta que uneix els dos punts, directament
% per x faig un funció del sinus (sin nx + ax = k)
\draw plot[domain=0:0.4216,smooth,variable=\t] ({-0.857727*\t -sin 
(7.31228*\t r) },{18.8812*\t -4 });
\draw plot[domain=0:0.4216,smooth,variable=\t] ({+0.857727*\t +sin 
(7.31228*\t r) },{18.8812*\t -4 });


% el sentit d'omega
\draw[decorate,decoration={markings,mark=at position .9 with 
{\arrow[blue,line width=1mm]{}}}] 
plot[domain=-3.141:3.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t 
r)});


% Els punts de les cel·les
% Calcul els combings per a y= 0 i y=1
\filldraw (-1.181475, 0) circle (2pt);
\filldraw (1.181475, 0) circle (2pt);
%\filldraw (1.161048, 1) circle (2pt);
%\filldraw (-1.161048, 1) circle (2pt);

% Els noms
\draw (0, -4.3) node {$1 \in G$};
\draw (2.5, -3) node {$w$};
\draw (-1.8, -0.3) node {$\sigma_{i+1}(j)$};
\draw (1.65, -0.3) node {$\sigma_i(j)$};

% Els noms dels camins
%\draw (1, 0.3) node {$a$};
%\draw (3, 0.3) node {$b$};
%\draw (3.7, 1) node {$c$};
%\draw (3, 1.7) node {$d$};
%\draw (1, 1.7) node {$e$};
%\draw (0.3, 1) node {$f$};
%\draw (2.3, 1) node {$g$};

% PROVES
%\draw[out=45,in=-45] (0,0) to (0.5,8);
%\draw[color=blue,-] (0,0) .. controls (0.1,2) .. (0.2,3) .. controls 
(0.3,4) and (0.4,6) .. (0.5,8);

%\draw (0,0) arc (-90:90:3 and 4);
%\draw (0,0) arc (270:90:3 and 4);
%\draw[color=green] plot[domain=-3.141:3.141,smooth,variable=\t] 
({4*sin(\t + (.1 * rand) r)},{4*cos(\t r)});

%\draw (0,0) arc (-90:81.82:2 and 4);
%\draw[decorate,decoration={random steps,segment length=2mm, 
amplitude=2pt}] (0,0) arc (-90:97.18:3.5 and 4);

%\draw[very thin,color=gray] (-5.1,-5.1) grid [step=1] (5.9,5.9);
%\draw[-] (-5.2,0) -- (6.2,0) node[right] {$x$};
%\draw[-] (0,-5.2) -- (0,5.2) node[above] {$y$};
% r = \frac{-1}{3} x + 3
%\filldraw (3,2) circle (2pt);
%\filldraw (-3,4) circle (2pt);
%\draw (-6,5) -- (6,1);
%\draw (1, 3.5) node {$r$};
\stoptikzpicture} {Les seccions de $\pi(w(i))$.}
{ \starttikzpicture[scale=1]
% Els punts
\filldraw (0,-4) circle (2pt);
\filldraw (0.4216,3.9603) circle (2pt); % primer punt: avaluo 
({3*sin(\t r)},{4*cos(\t r)}); a t = 0.141
\filldraw (-0.4216,3.9603) circle (2pt); % primer punt: avaluo 
({3*sin(\t r)},{4*cos(\t r)}); a t = -0.141


% Les línies entre els punts
\draw (-0.4216,3.9603) -- (0.4216,3.9603);
\draw plot[domain=-3.141:-0.141,smooth,variable=\t] ({3*sin(\t 
r)},{4*cos(\t r)});
\draw plot[domain=0.141:3.141,smooth,variable=\t] ({3*sin(\t 
r)},{4*cos(\t r)});

\filldraw (0,-4) circle (2pt); % perquè me quedi el punt damunt.

% Els combings
% Dibuixo:
% amb y la línia recta que uneix els dos punts, directament
% per x faig un funció del sinus (sin nx + ax = k)
\draw plot[domain=0:0.4216,smooth,variable=\t] ({-0.857727*\t -sin 
(7.31228*\t r) },{18.8812*\t -4 });
\draw plot[domain=0:0.4216,smooth,variable=\t] ({+0.857727*\t +sin 
(7.31228*\t r) },{18.8812*\t -4 });


% el sentit d'omega
\draw[decorate,decoration={markings,mark=at position .9 with 
{\arrow[blue,line width=1mm]{}}}] 
plot[domain=-3.141:3.141,smooth,variable=\t] ({3*sin(\t r)},{4*cos(\t 
r)});


% Els punts de les cel·les
% Calcul els combings per a y= 0 i y=1
\filldraw (-1.181475, 0) circle (2pt);
\filldraw (1.181475, 0) circle (2pt);
%\filldraw (1.161048, 1) circle (2pt);
%\filldraw (-1.161048, 1) circle (2pt);

% Els noms
\draw (0, -4.3) node {$1 \in G$};
\draw (2.5, -3) node {$w$};
\draw (-1.8, -0.3) node {$\sigma_{i+1}(j)$};
\draw (1.65, -0.3) node {$\sigma_i(j)$};

% Els noms dels camins
%\draw (1, 0.3) node {$a$};
%\draw (3, 0.3) node {$b$};
%\draw (3.7, 1) node {$c$};
%\draw (3, 1.7) node {$d$};
%\draw (1, 1.7) node {$e$};
%\draw (0.3, 1) node {$f$};
%\draw (2.3, 1) node {$g$};
\stoptikzpicture} {El camí $\theta_{i,j}$.}
  \stopcombination

\startcombination[1*1]
{ \starttikzpicture[scale=1]
% Els punts
\filldraw 

Re: [NTG-context] startcombination alignment problem

2009-06-10 Thread Wolfgang Schuster


Am 10.06.2009 um 18:26 schrieb Xan:


Hi,

I want to put three graphics by this way:

[graphic 1] [graphic 2]
[graphic 3]

where graphic 3 is centered.

I use combination, but graphic 3 puts me in left
[graphic 1] [graphic 2]
[graphic 3]

How can I solve that?


The same question was asked in the past by someone else and your  
should find it
together with the answer in the mail archive, search for  
\startcombination

or \bTD[nx=2] ...

Wolfgang

___
If your question is of interest to others as well, please add an entry to the 
Wiki!

maillist : ntg-context@ntg.nl / http://www.ntg.nl/mailman/listinfo/ntg-context
webpage  : http://www.pragma-ade.nl / http://tex.aanhet.net
archive  : https://foundry.supelec.fr/projects/contextrev/
wiki : http://contextgarden.net
___