Author: Jasper Schulz <jasper.sch...@student.hpi.uni-potsdam.de>
Branch: numpypy-complex2
Changeset: r55862:4a0dbf4567f8
Date: 2012-06-27 16:29 +0200
http://bitbucket.org/pypy/pypy/changeset/4a0dbf4567f8/

Log:    started to outsource complex methods

diff --git a/pypy/rlib/rcomplex.py b/pypy/rlib/rcomplex.py
new file mode 100644
--- /dev/null
+++ b/pypy/rlib/rcomplex.py
@@ -0,0 +1,539 @@
+import math
+from math import copysign
+from pypy.module.cmath.special_value import isfinite
+
+#binary
+
+def c_add(x, y):
+    (r1, i1), (r2, i2) = x, y
+    r = r1 + r2
+    i = i1 + i2
+    return (r, i)
+
+def c_sub(x, y):
+    (r1, i1), (r2, i2) = x, y
+    r = r1 - r2
+    i = i1 - i2
+    return (r, i)
+
+def c_mul(x, y):
+    (r1, i1), (r2, i2) = x, y
+    r = r1 * r2 - i1 * i2
+    i = r1 * i2 + i1 * r2
+    return (r, i)
+
+def c_div(x, y): #x/y
+    (r1, i1), (r2, i2) = x, y
+    if r2 < 0:
+        abs_r2 = -r2
+    else:
+        abs_r2 = r2
+    if i2 < 0:
+        abs_i2 = -i2
+    else:
+        abs_i2 = i2
+    if abs_r2 >= abs_i2:
+        if abs_r2 == 0.0:
+            raise ZeroDivisionError
+        else:
+            ratio = i2 / r2
+            denom = r2 + i2 * ratio
+            rr = (r1 + i1 * ratio) / denom
+            ir = (i1 - r1 * ratio) / denom
+    else:
+        ratio = r2 / i2
+        denom = r2 * ratio + i2
+        assert i2 != 0.0
+        rr = (r1 * ratio + i1) / denom
+        ir = (i1 * ratio - r1) / denom
+    return (rr, ir)
+
+def c_pow(x, y):
+    (r1, i1), (r2, i2) = x, y
+    if r2 == 0.0 and i2 == 0.0:
+        rr, ir = 1, 0
+    elif r1 == 0.0 and i1 == 0.0:
+        if i2 != 0.0 or r2 < 0.0:
+            raise ZeroDivisionError
+        rr, ir = (0.0, 0.0)
+    else:
+        vabs = math.hypot(r1,i1)
+        len = math.pow(vabs,r2)
+        at = math.atan2(i1,r1)
+        phase = at * r2
+        if i2 != 0.0:
+            len /= math.exp(at * i2)
+            phase += i2 * math.log(vabs)
+        rr = len * math.cos(phase)
+        ir = len * math.sin(phase)
+    return (rr, ir)
+
+#unary
+
+def c_neg(r, i):
+    return (-r, -i)
+
+
+def c_sqrt(r, i):
+    '''
+    Method: use symmetries to reduce to the case when x = z.real and y
+    = z.imag are nonnegative.  Then the real part of the result is
+    given by
+    
+      s = sqrt((x + hypot(x, y))/2)
+    
+    and the imaginary part is
+    
+      d = (y/2)/s
+    
+    If either x or y is very large then there's a risk of overflow in
+    computation of the expression x + hypot(x, y).  We can avoid this
+    by rewriting the formula for s as:
+    
+      s = 2*sqrt(x/8 + hypot(x/8, y/8))
+    
+    This costs us two extra multiplications/divisions, but avoids the
+    overhead of checking for x and y large.
+    
+    If both x and y are subnormal then hypot(x, y) may also be
+    subnormal, so will lack full precision.  We solve this by rescaling
+    x and y by a sufficiently large power of 2 to ensure that x and y
+    are normal.
+    '''
+
+    if not isfinite(r) or not isfinite(i):
+        return sqrt_special_values[special_type(r)][special_type(i)]
+
+    if r == 0. and i == 0.:
+        return (0., y)
+
+    ar = fabs(r)
+    ai = fabs(i)
+
+    if ar < DBL_MIN and ai < DBL_MIN and (ar > 0. or ai > 0.):
+        # here we catch cases where hypot(ar, ai) is subnormal
+        ar = math.ldexp(ar, CM_SCALE_UP)
+        ai1= math.ldexp(ai, CM_SCALE_UP)
+        s = math.ldexp(math.sqrt(ar + math.hypot(ar, ai1)),
+                       CM_SCALE_DOWN)
+    else:
+        ar /= 8.
+        s = 2.*math.sqrt(ar + math.hypot(ar, ai/8.))
+
+    d = ai/(2.*s)
+
+    if x >= 0.:
+        return (s, copysign(d, i))
+    else:
+        return (d, copysign(s, i))
+
+
+def c_acos(r, i):
+    if not isfinite(r) or not isfinite(i):
+        return acos_special_values[special_type(r)][special_type(i)]
+
+    if fabs(r) > CM_LARGE_DOUBLE or fabs(i) > CM_LARGE_DOUBLE:
+        # avoid unnecessary overflow for large arguments
+        real = math.atan2(fabs(i), r)
+        # split into cases to make sure that the branch cut has the
+        # correct continuity on systems with unsigned zeros
+        if r < 0.:
+            imag = -copysign(math.log(math.hypot(r/2., i/2.)) +
+                             M_LN2*2., i)
+        else:
+            imag = copysign(math.log(math.hypot(r/2., i/2.)) +
+                            M_LN2*2., -i)
+    else:
+        s1r, s1i = c_sqrt(1.-r, -i)
+        s2r, s2i = c_sqrt(1.+r, i)
+        real = 2.*math.atan2(s1r, s2r)
+        imag = asinh(s2r*s1i - s2i*s1r)
+    return (real, imag)
+
+
+def c_acosh(x, y):
+    # XXX the following two lines seem unnecessary at least on Linux;
+    # the tests pass fine without them
+    if not isfinite(x) or not isfinite(y):
+        return acosh_special_values[special_type(x)][special_type(y)]
+
+    if fabs(x) > CM_LARGE_DOUBLE or fabs(y) > CM_LARGE_DOUBLE:
+        # avoid unnecessary overflow for large arguments
+        real = math.log(math.hypot(x/2., y/2.)) + M_LN2*2.
+        imag = math.atan2(y, x)
+    else:
+        s1x, s1y = c_sqrt(x - 1., y)
+        s2x, s2y = c_sqrt(x + 1., y)
+        real = asinh(s1x*s2x + s1y*s2y)
+        imag = 2.*math.atan2(s1y, s2x)
+    return (real, imag)
+
+
+def c_asin(x, y):
+    # asin(z) = -i asinh(iz)
+    sx, sy = c_asinh(-y, x)
+    return (sy, -sx)
+
+
+def c_asinh(x, y):
+    if not isfinite(x) or not isfinite(y):
+        return asinh_special_values[special_type(x)][special_type(y)]
+
+    if fabs(x) > CM_LARGE_DOUBLE or fabs(y) > CM_LARGE_DOUBLE:
+        if y >= 0.:
+            real = copysign(math.log(math.hypot(x/2., y/2.)) +
+                            M_LN2*2., x)
+        else:
+            real = -copysign(math.log(math.hypot(x/2., y/2.)) +
+                             M_LN2*2., -x)
+        imag = math.atan2(y, fabs(x))
+    else:
+        s1x, s1y = c_sqrt(1.+y, -x)
+        s2x, s2y = c_sqrt(1.-y, x)
+        real = asinh(s1x*s2y - s2x*s1y)
+        imag = math.atan2(y, s1x*s2x - s1y*s2y)
+    return (real, imag)
+
+
+def c_atan(x, y):
+    # atan(z) = -i atanh(iz)
+    sx, sy = c_atanh(-y, x)
+    return (sy, -sx)
+
+
+def c_atanh(x, y):
+    if not isfinite(x) or not isfinite(y):
+        return atanh_special_values[special_type(x)][special_type(y)]
+
+    # Reduce to case where x >= 0., using atanh(z) = -atanh(-z).
+    if x < 0.:
+        return c_neg(*c_atanh(*c_neg(x, y)))
+
+    ay = fabs(y)
+    if x > CM_SQRT_LARGE_DOUBLE or ay > CM_SQRT_LARGE_DOUBLE:
+        # if abs(z) is large then we use the approximation
+        # atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign
+        # of y
+        h = math.hypot(x/2., y/2.)   # safe from overflow
+        real = x/4./h/h
+        # the two negations in the next line cancel each other out
+        # except when working with unsigned zeros: they're there to
+        # ensure that the branch cut has the correct continuity on
+        # systems that don't support signed zeros
+        imag = -copysign(math.pi/2., -y)
+    elif x == 1. and ay < CM_SQRT_DBL_MIN:
+        # C99 standard says:  atanh(1+/-0.) should be inf +/- 0i
+        if ay == 0.:
+            raise ValueError("math domain error")
+            #real = INF
+            #imag = y
+        else:
+            real = -math.log(math.sqrt(ay)/math.sqrt(math.hypot(ay, 2.)))
+            imag = copysign(math.atan2(2., -ay) / 2, y)
+    else:
+        real = log1p(4.*x/((1-x)*(1-x) + ay*ay))/4.
+        imag = -math.atan2(-2.*y, (1-x)*(1+x) - ay*ay) / 2.
+    return (real, imag)
+
+
+def c_log(x, y):
+    # The usual formula for the real part is log(hypot(z.real, z.imag)).
+    # There are four situations where this formula is potentially
+    # problematic:
+    #
+    # (1) the absolute value of z is subnormal.  Then hypot is subnormal,
+    # so has fewer than the usual number of bits of accuracy, hence may
+    # have large relative error.  This then gives a large absolute error
+    # in the log.  This can be solved by rescaling z by a suitable power
+    # of 2.
+    #
+    # (2) the absolute value of z is greater than DBL_MAX (e.g. when both
+    # z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX)
+    # Again, rescaling solves this.
+    #
+    # (3) the absolute value of z is close to 1.  In this case it's
+    # difficult to achieve good accuracy, at least in part because a
+    # change of 1ulp in the real or imaginary part of z can result in a
+    # change of billions of ulps in the correctly rounded answer.
+    #
+    # (4) z = 0.  The simplest thing to do here is to call the
+    # floating-point log with an argument of 0, and let its behaviour
+    # (returning -infinity, signaling a floating-point exception, setting
+    # errno, or whatever) determine that of c_log.  So the usual formula
+    # is fine here.
+
+    # XXX the following two lines seem unnecessary at least on Linux;
+    # the tests pass fine without them
+    if not isfinite(x) or not isfinite(y):
+        return log_special_values[special_type(x)][special_type(y)]
+
+    ax = fabs(x)
+    ay = fabs(y)
+
+    if ax > CM_LARGE_DOUBLE or ay > CM_LARGE_DOUBLE:
+        real = math.log(math.hypot(ax/2., ay/2.)) + M_LN2
+    elif ax < DBL_MIN and ay < DBL_MIN:
+        if ax > 0. or ay > 0.:
+            # catch cases where hypot(ax, ay) is subnormal
+            real = math.log(math.hypot(math.ldexp(ax, DBL_MANT_DIG),
+                                       math.ldexp(ay, DBL_MANT_DIG)))
+            real -= DBL_MANT_DIG*M_LN2
+        else:
+            # log(+/-0. +/- 0i)
+            raise ValueError("math domain error")
+            #real = -INF
+            #imag = atan2(y, x)
+    else:
+        h = math.hypot(ax, ay)
+        if 0.71 <= h and h <= 1.73:
+            am = max(ax, ay)
+            an = min(ax, ay)
+            real = log1p((am-1)*(am+1) + an*an) / 2.
+        else:
+            real = math.log(h)
+    imag = math.atan2(y, x)
+    return (real, imag)
+
+
+def c_log10(x, y):
+    rx, ry = c_log(x, y)
+    return (rx / M_LN10, ry / M_LN10)
+
+def c_exp(x, y):
+    if not isfinite(x) or not isfinite(y):
+        if isinf(x) and isfinite(y) and y != 0.:
+            if x > 0:
+                real = copysign(INF, math.cos(y))
+                imag = copysign(INF, math.sin(y))
+            else:
+                real = copysign(0., math.cos(y))
+                imag = copysign(0., math.sin(y))
+            r = (real, imag)
+        else:
+            r = exp_special_values[special_type(x)][special_type(y)]
+
+        # need to raise ValueError if y is +/- infinity and x is not
+        # a NaN and not -infinity
+        if isinf(y) and (isfinite(x) or (isinf(x) and x > 0)):
+            raise ValueError("math domain error")
+        return r
+
+    if x > CM_LOG_LARGE_DOUBLE:
+        l = math.exp(x-1.)
+        real = l * math.cos(y) * math.e
+        imag = l * math.sin(y) * math.e
+    else:
+        l = math.exp(x)
+        real = l * math.cos(y)
+        imag = l * math.sin(y)
+    if isinf(real) or isinf(imag):
+        raise OverflowError("math range error")
+    return real, imag
+
+
+def c_cosh(x, y):
+    if not isfinite(x) or not isfinite(y):
+        if isinf(x) and isfinite(y) and y != 0.:
+            if x > 0:
+                real = copysign(INF, math.cos(y))
+                imag = copysign(INF, math.sin(y))
+            else:
+                real = copysign(INF, math.cos(y))
+                imag = -copysign(INF, math.sin(y))
+            r = (real, imag)
+        else:
+            r = cosh_special_values[special_type(x)][special_type(y)]
+
+        # need to raise ValueError if y is +/- infinity and x is not
+        # a NaN
+        if isinf(y) and not isnan(x):
+            raise ValueError("math domain error")
+        return r
+
+    if fabs(x) > CM_LOG_LARGE_DOUBLE:
+        # deal correctly with cases where cosh(x) overflows but
+        # cosh(z) does not.
+        x_minus_one = x - copysign(1., x)
+        real = math.cos(y) * math.cosh(x_minus_one) * math.e
+        imag = math.sin(y) * math.sinh(x_minus_one) * math.e
+    else:
+        real = math.cos(y) * math.cosh(x)
+        imag = math.sin(y) * math.sinh(x)
+    if isinf(real) or isinf(imag):
+        raise OverflowError("math range error")
+    return real, imag
+
+
+def c_sinh(x, y):
+    # special treatment for sinh(+/-inf + iy) if y is finite and nonzero
+    if not isfinite(x) or not isfinite(y):
+        if isinf(x) and isfinite(y) and y != 0.:
+            if x > 0:
+                real = copysign(INF, math.cos(y))
+                imag = copysign(INF, math.sin(y))
+            else:
+                real = -copysign(INF, math.cos(y))
+                imag = copysign(INF, math.sin(y))
+            r = (real, imag)
+        else:
+            r = sinh_special_values[special_type(x)][special_type(y)]
+
+        # need to raise ValueError if y is +/- infinity and x is not
+        # a NaN
+        if isinf(y) and not isnan(x):
+            raise ValueError("math domain error")
+        return r
+
+    if fabs(x) > CM_LOG_LARGE_DOUBLE:
+        x_minus_one = x - copysign(1., x)
+        real = math.cos(y) * math.sinh(x_minus_one) * math.e
+        imag = math.sin(y) * math.cosh(x_minus_one) * math.e
+    else:
+        real = math.cos(y) * math.sinh(x)
+        imag = math.sin(y) * math.cosh(x)
+    if isinf(real) or isinf(imag):
+        raise OverflowError("math range error")
+    return real, imag
+
+
+def c_tanh(x, y):
+    # Formula:
+    #
+    #   tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) /
+    #   (1+tan(y)^2 tanh(x)^2)
+    #
+    #   To avoid excessive roundoff error, 1-tanh(x)^2 is better computed
+    #   as 1/cosh(x)^2.  When abs(x) is large, we approximate 1-tanh(x)^2
+    #   by 4 exp(-2*x) instead, to avoid possible overflow in the
+    #   computation of cosh(x).
+
+    if not isfinite(x) or not isfinite(y):
+        if isinf(x) and isfinite(y) and y != 0.:
+            if x > 0:
+                real = 1.0        # vv XXX why is the 2. there?
+                imag = copysign(0., 2. * math.sin(y) * math.cos(y))
+            else:
+                real = -1.0
+                imag = copysign(0., 2. * math.sin(y) * math.cos(y))
+            r = (real, imag)
+        else:
+            r = tanh_special_values[special_type(x)][special_type(y)]
+
+        # need to raise ValueError if y is +/-infinity and x is finite
+        if isinf(y) and isfinite(x):
+            raise ValueError("math domain error")
+        return r
+
+    if fabs(x) > CM_LOG_LARGE_DOUBLE:
+        real = copysign(1., x)
+        imag = 4. * math.sin(y) * math.cos(y) * math.exp(-2.*fabs(x))
+    else:
+        tx = math.tanh(x)
+        ty = math.tan(y)
+        cx = 1. / math.cosh(x)
+        txty = tx * ty
+        denom = 1. + txty * txty
+        real = tx * (1. + ty*ty) / denom
+        imag = ((ty / denom) * cx) * cx
+    return real, imag
+
+
+def c_cos(r, i):
+    # cos(z) = cosh(iz)
+    return c_cosh(-i, r)
+
+def c_sin(r, i):
+    # sin(z) = -i sinh(iz)
+    sr, si = c_sinh(-i, r)
+    return si, -sr
+
+def c_tan(r, i):
+    # tan(z) = -i tanh(iz)
+    sr, si = c_tanh(-i, r)
+    return si, -sr
+
+
+def c_rect(r, phi):
+    if not isfinite(r) or not isfinite(phi):
+        # if r is +/-infinity and phi is finite but nonzero then
+        # result is (+-INF +-INF i), but we need to compute cos(phi)
+        # and sin(phi) to figure out the signs.
+        if isinf(r) and isfinite(phi) and phi != 0.:
+            if r > 0:
+                real = copysign(INF, math.cos(phi))
+                imag = copysign(INF, math.sin(phi))
+            else:
+                real = -copysign(INF, math.cos(phi))
+                imag = -copysign(INF, math.sin(phi))
+            z = (real, imag)
+        else:
+            z = rect_special_values[special_type(r)][special_type(phi)]
+
+        # need to raise ValueError if r is a nonzero number and phi
+        # is infinite
+        if r != 0. and not isnan(r) and isinf(phi):
+            raise ValueError("math domain error")
+        return z
+
+    real = r * math.cos(phi)
+    imag = r * math.sin(phi)
+    return real, imag
+
+
+def c_phase(x, y):
+    # Windows screws up atan2 for inf and nan, and alpha Tru64 5.1 doesn't
+    # follow C99 for atan2(0., 0.).
+    if isnan(x) or isnan(y):
+        return NAN
+    if isinf(y):
+        if isinf(x):
+            if copysign(1., x) == 1.:
+                # atan2(+-inf, +inf) == +-pi/4
+                return copysign(0.25 * math.pi, y)
+            else:
+                # atan2(+-inf, -inf) == +-pi*3/4
+                return copysign(0.75 * math.pi, y)
+        # atan2(+-inf, x) == +-pi/2 for finite x
+        return copysign(0.5 * math.pi, y)
+    if isinf(x) or y == 0.:
+        if copysign(1., x) == 1.:
+            # atan2(+-y, +inf) = atan2(+-0, +x) = +-0.
+            return copysign(0., y)
+        else:
+            # atan2(+-y, -inf) = atan2(+-0., -x) = +-pi.
+            return copysign(math.pi, y)
+    return math.atan2(y, x)
+
+
+def c_abs(r, i):
+    if not isfinite(r) or not isfinite(i):
+        # C99 rules: if either the real or the imaginary part is an
+        # infinity, return infinity, even if the other part is a NaN.
+        if isinf(r):
+            return INF
+        if isinf(i):
+            return INF
+
+        # either the real or imaginary part is a NaN,
+        # and neither is infinite. Result should be NaN.
+        return NAN
+
+    result = math.hypot(r, i)
+    if not isfinite(result):
+        raise OverflowError("math range error")
+    return result
+
+
+def c_polar(r, i):
+    real = c_abs(r, i)
+    phi = c_phase(r, i)
+    return real, phi
+
+
+def c_isinf(r, i):
+    return isinf(r) or isinf(i)
+
+
+def c_isnan(r, i):
+    return isnan(r) or isnan(i)
+
diff --git a/pypy/rlib/test/test_rcomplex.py b/pypy/rlib/test/test_rcomplex.py
new file mode 100644
--- /dev/null
+++ b/pypy/rlib/test/test_rcomplex.py
@@ -0,0 +1,31 @@
+
+import pypy.rlib.rcomplex as c
+
+
+def test_add():
+    for c1, c2, result in [
+        ((0, 0), (0, 0), (0, 0)),
+        ((1, 0), (2, 0), (3, 0)),
+        ((0, 3), (0, 2), (0, 5)),
+        ((10., -3.), (-5, 7), (5, 4)),
+    ]:
+        assert c.c_add(c1, c2) == result
+
+def test_sub():
+    for c1, c2, result in [
+            ((0, 0), (0, 0), (0, 0)),
+            ((1, 0), (2, 0), (-1, 0)),
+            ((0, 3), (0, 2), (0, 1)),
+            ((10, -3), (-5, 7), (15, -10)),
+            ((42, 0.3), (42, 0.3), (0, 0))
+        ]:
+            assert c.c_sub(c1, c2) == result 
+
+def test_mul():
+   for c1, c2, result in [
+            ((0, 0), (0, 0), (0, 0)),
+            ((1, 0), (2, 0), (2, 0)),
+            ((0, 3), (0, 2), (-6, 0)),
+            ((0, -3), (-5, 0), (0, 15)),
+        ]:
+            assert c.c_mul(c1, c2) == result
\ No newline at end of file
_______________________________________________
pypy-commit mailing list
pypy-commit@python.org
http://mail.python.org/mailman/listinfo/pypy-commit

Reply via email to