As a start to this forum Ive included this wonderful peice of Vanilla code - 
[b]The Kalman Filter[/b]
I downloaded from github this wonderfully elegant Kalman filter : 
[url]https://github.com/hbcbh1999/kalman-filter[/url] Its a really nice and 
simple implementation using the equations you can find on wikipedia 
[url]https://en.wikipedia.org/wiki/Kalman_filter[/url] It looks really awsome 
when applied to the 
[url=http://spacetripping.just4books.co.uk/HiRobot/viewtopic.php?f=7&t=6]Arneodo
 XS dimension Chaotic Attractor[/url] with added noise. Enjoy. 

[color=#FF0000]Works in Python 2.7 or Python 3.0+[/color]

[code]#!/usr/bin/env python
# coding: utf-8

# In[1]:


get_ipython().magic(u'matplotlib inline')
import numpy as np


# In[2]:


class KalmanFilter(object):
    def __init__(self, F = None, B = None, H = None, Q = None, R = None, P = 
None, x0 = None):

        if(F is None or H is None):
            raise ValueError("Set proper system dynamics.")

        self.n = F.shape[1]
        self.m = H.shape[1]

        self.F = F
        self.H = H
        self.B = 0 if B is None else B
        self.Q = np.eye(self.n) if Q is None else Q
        self.R = np.eye(self.n) if R is None else R
        self.P = np.eye(self.n) if P is None else P
        self.x = np.zeros((self.n, 1)) if x0 is None else x0

    def predict(self, u = 0):
        self.x = np.dot(self.F, self.x) + np.dot(self.B, u)
        self.P = np.dot(np.dot(self.F, self.P), self.F.T) + self.Q
        return self.x

    def update(self, z):
        y = z - np.dot(self.H, self.x)
        S = self.R + np.dot(self.H, np.dot(self.P, self.H.T))
        K = np.dot(np.dot(self.P, self.H.T), np.linalg.inv(S))
        self.x = self.x + np.dot(K, y)
        I = np.eye(self.n)
        self.P = np.dot(np.dot(I - np.dot(K, self.H), self.P), 
                (I - np.dot(K, self.H)).T) + np.dot(np.dot(K, self.R), K.T)
        return y
        

def arneodo(x, y, z, a=-5.5, b=3.5, c=-1):
    '''
    Given:
       x, y, z: a point of interest in three dimensional space
       s, r, b: parameters defining the lorenz attractor
    Returns:
       x_dot, y_dot, z_dot: values of the lorenz attractor's partial
           derivatives at the point x, y, z
    '''
    x_dot = y
    y_dot = z
    z_dot = -a*x-b*y-z+c*(x**3)
    return x_dot, y_dot, z_dot


dt = 0.01
num_steps = 7000

# Need one more for the initial values
xs = np.empty(num_steps + 1)
ys = np.empty(num_steps + 1)
zs = np.empty(num_steps + 1)

# Set initial values
xs[0], ys[0], zs[0] = (0.1, 0, 0.1)

# Step through "time", calculating the partial derivatives at the current point
# and using them to estimate the next point
for i in range(num_steps):
    x_dot, y_dot, z_dot = arneodo(xs[i], ys[i], zs[i])
    xs[i + 1] = xs[i] + (x_dot * dt)
    ys[i + 1] = ys[i] + (y_dot * dt)
    zs[i + 1] = zs[i] + (z_dot * dt)

def example():
    dt = 1.0/60
    F = np.array([[1, dt, 0], [0, 1, dt], [0, 0, 1]]).reshape(3,3)
    H = np.array([1, 0, 0]).reshape(1, 3)
    Q = np.array([[0.05, 0.05, 0.0], [0.05, 0.05, 0.0], [0.0, 0.0, 
0.0]]).reshape(3,3)
    R = np.array([0.5]).reshape(1, 1)
    Error = np.empty(7002)
      
    x = np.linspace(-10, 10, 100)
    measurements = xs + np.random.normal(0, 2, 7001)
#- (x**2 + 2*x - 2)
    kf = KalmanFilter(F = F, H = H, Q = Q, R = R)
    predictions = []

    n=0
    for z in measurements:
        n+=1
        predictions.append(np.dot(H,  kf.predict())[0])
        Error[n] =kf.update(z)
         
        

    import matplotlib.pyplot as plt
    plt.plot(range(len(Error)), Error, label = 'Error')
    plt.plot(range(len(measurements)), measurements, label = 'Measurements')
    plt.plot(range(len(predictions)), np.array(predictions), label = 'Kalman 
Filter Prediction')
    plt.plot(range(len(xs)), xs, label = 'Signal')
    plt.legend()
    plt.show()
    
if __name__ == '__main__':
    example()

[/code]

The proceeding discussions will be about the use of the following matrices in 
the Kalman Filter, what form they may take and how they can be derived from the 
distribution we are modelling :

    dt = 1.0/60
    F = np.array([[1, dt, 0], [0, 1, dt], [0, 0, 1]]).reshape(3,3)   #State 
Transition Model
    H = np.array([1, 0, 0]).reshape(1, 3)                                  
#Observation Model
    Q = np.array([[0.05, 0.05, 0.0], [0.05, 0.05, 0.0], [0.0, 0.0, 
0.0]]).reshape(3,3)   #Covariance Matrix
    R = np.array([0.5]).reshape(1, 1)[/code]     #Covariance Matrix

[url=https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average]ARIMA
 - Wikipedia[/url]

[img]http://spacetripping.just4books.co.uk/HiRobot/output_4_0.png[/img]

Original source:
http://spacetripping.just4books.co.uk/HiRobot/viewtopic.php?f=7&t=3
-- 
https://mail.python.org/mailman/listinfo/python-list

Reply via email to