Re: [Scikit-learn-general] Concatenating scikit.sparse matrix and numpy arrays

2014-07-03 Thread ZORAIDA HIDALGO SANCHEZ
[email protected]>" mailto:[email protected]>> Fecha: jueves, 3 de julio de 2014 12:51 Para: scikit-learn-general mailto:[email protected]>> Asunto: Re: [Scikit-learn-general] Concatenating scikit.sparse matrix and nump

Re: [Scikit-learn-general] Concatenating scikit.sparse matrix and numpy arrays

2014-07-03 Thread Joel Nothman
s.sourceforge.net> > Fecha: jueves, 3 de julio de 2014 08:39 > Para: scikit-learn-general > Asunto: Re: [Scikit-learn-general] Concatenating scikit.sparse matrix and > numpy arrays > > I think you may be reinventing sklearn.pipeline.FeatureUnion. If one of > the transfo

Re: [Scikit-learn-general] Concatenating scikit.sparse matrix and numpy arrays

2014-07-03 Thread ZORAIDA HIDALGO SANCHEZ
[email protected]>" mailto:[email protected]>> Fecha: jueves, 3 de julio de 2014 08:39 Para: scikit-learn-general mailto:[email protected]>> Asunto: Re: [Scikit-learn-general] Concatenating scikit.sparse matrix and numpy arra

Re: [Scikit-learn-general] Concatenating scikit.sparse matrix and numpy arrays

2014-07-02 Thread Joel Nothman
I think you may be reinventing sklearn.pipeline.FeatureUnion. If one of the transformers returns sparse, it will hstack all the outputs to a sparse format. On 3 July 2014 02:35, ZORAIDA HIDALGO SANCHEZ < [email protected]> wrote: > Dear all, > > For a given dataset, I can hav

[Scikit-learn-general] Concatenating scikit.sparse matrix and numpy arrays

2014-07-02 Thread ZORAIDA HIDALGO SANCHEZ
Dear all, For a given dataset, I can have more than one source(differente csv) and each of these sources needs a different transformer(for instance, one source could be text and uses TfidfVectorizer whereas other is composed by attributes of type float and needs to be normalized using StandardScal