Re: [Scikit-learn-general] adaboost parameters

2015-04-14 Thread Jason Wolosonovich
week and I got these links from Andy's response (thanks Andy!) -Jason From: Pagliari, Roberto [mailto:rpagli...@appcomsci.com] Sent: Tuesday, April 14, 2015 3:08 PM To: scikit-learn-general@lists.sourceforge.net Subject: Re: [Scikit-learn-general] adaboost parameters hi Jason/Andreas,

Re: [Scikit-learn-general] adaboost parameters

2015-04-14 Thread Pagliari, Roberto
ed in the video. I don't know other tips or rule of thumbs are available. Thanks, From: Jason Wolosonovich [jmwol...@asu.edu] Sent: Monday, April 13, 2015 10:47 PM To: scikit-learn-general@lists.sourceforge.net Subject: Re: [Scikit-learn-general] adaboost

Re: [Scikit-learn-general] adaboost parameters

2015-04-13 Thread Jason Wolosonovich
oject. -Jason From: Andreas Mueller [mailto:t3k...@gmail.com] Sent: Monday, April 13, 2015 3:31 PM To: scikit-learn-general@lists.sourceforge.net Subject: Re: [Scikit-learn-general] adaboost parameters You might consider using gradient boosting instead. see https://www.youtube.com/watch?v=IXZKgIsZRm0

Re: [Scikit-learn-general] adaboost parameters

2015-04-13 Thread Andreas Mueller
:* Re: [Scikit-learn-general] adaboost parameters What is your dataset like? How are you building your individual classifier that you are ensembling with AdaBoost? A common-use case would be boosted decision stumps (one-level decision trees). http://en.wikipedia.org/wiki/Decision_stump http

Re: [Scikit-learn-general] adaboost parameters

2015-04-12 Thread Pagliari, Roberto
ks, From: Jason Wolosonovich [mailto:jmwol...@asu.edu] Sent: Saturday, April 11, 2015 9:13 AM To: scikit-learn-general@lists.sourceforge.net Subject: Re: [Scikit-learn-general] adaboost parameters What is your dataset like? How are you building your individual classifier that you are ensem

Re: [Scikit-learn-general] adaboost parameters

2015-04-11 Thread Jason Wolosonovich
What is your dataset like? How are you building your individual classifier that you are ensembling with AdaBoost? A common-use case would be boosted decision stumps (one-level decision trees). http://en.wikipedia.org/wiki/Decision_stump http://lyonesse.stanford.edu/~langley/papers/stump.ml92.pd