Currently (In Spark 2.3.1) we cannot bucket DataFrames by nested columns, e.g
df.write.bucketBy(10, "key.a").saveAsTable(“junk”) will result in the following exception: org.apache.spark.sql.AnalysisException: bucket column key.a is not defined in table junk, defined table columns are: key, value; at org.apache.spark.sql.catalyst.catalog.CatalogUtils$$anonfun$org$apache$spark$sql$catalyst$catalog$CatalogUtils$$normalizeColumnName$2.apply(ExternalCatalogUtils.scala:246) at org.apache.spark.sql.catalyst.catalog.CatalogUtils$$anonfun$org$apache$spark$sql$catalyst$catalog$CatalogUtils$$normalizeColumnName$2.apply(ExternalCatalogUtils.scala:246) at scala.Option.getOrElse(Option.scala:121) … Are there plans to change this anytime soon? Thanks, David --------------------------------------------------------------------- To unsubscribe e-mail: user-unsubscr...@spark.apache.org