Re: [QE-users] magnetism in hematite (alpha-Fe2O3)

2018-04-09 Thread Mostafa Youssef
Dear Yasser,

Thank you for your response and suggestion. I agree that DFT+U would
improve the electronic structure of Fe-oxides, but the problem I'm facing
is more related to symmetry. But to confirm this, I did actually try a
quick DFT+U  calculation and I still have the same problem that some oxygen
ions in the conventional cell develop antiferromagnetic ordering.
 I would not be worried if all oxygen ions did this (both in the
conventional and primitive cells). But the fact that only some of the
oxygen ions (in the conventional cell only) exhibit this ordering is what
makes me concerned about the way I'm setting up the system. So still any
suggestions are welcome.


Regards,
Mostafa
___
users mailing list
users@lists.quantum-espresso.org
https://lists.quantum-espresso.org/mailman/listinfo/users

Re: [QE-users] magnetism in hematite (alpha-Fe2O3)

2018-04-07 Thread Yasser Fowad AlWahedi




Dear Mostafa



Iron oxides specifically Hematite, Maghemite and Magnetite require using a different approach. For these materials, the proper way to handle them is by using a hubbard potential in a formulation know as DFT+U or LDA+U.





The right hubbard potential for Hematite can be found in the literature. I can send u later an input file for Maghemite.




Probably that's the reason you are facing difficulty in producing experimental results.



Yasser Al Wahedi 


Assistant Professor


Khalifa University 





Get Outlook for Android





From: Mostafa Youssef


Sent: Saturday, 7 April, 16:53


Subject: [QE-users] magnetism in hematite (alpha-Fe2O3)


To: users@lists.quantum-espresso.org




Dear all



Hematite (alpha-Fe2O3) crystallizes in the corundum structure.  The primitive cell is rhombohedral containing 2 formula units, whereas the conventional cell is hexagonal containing 6 formula units. I'm trying to model the antiferromagnetic phase of hematite
 with spin ordering (+--+) in the primitive cell. Relaxation (or variable cell relaxation) works nicely for the primitive cell and I obtain a reasonable final structure and magnetic moments on iron ions and zero magnetic moment in oxygen ions. This is consistent
 with literature. Note that all iron ions are equivalent crystallographically and all oxygen ions are crystallographyically.  However, when I try to relax (or vc-relax) the corresponding conventional cell, some symmetry breaking occurs and few iron ions develop
 magnetic moment different than the rest. Additionally some oxygen ions develop magnetic moment as well.  The final result is antiferromagnetic still, but of course the structure is not consistent with prior reports and is not consistent with primitive cell
 calculations.  Also the energy/Fe2O3 for the conventional cell is higher than the primitive cell. I tried many things to avoid this strange-looking local minimum such as:



1- Using cg instead of david algorithm.


2- Different starting magnetization


3- Different initial experimentally determined atom positions


4- Different pseudopotentials


5- Applying smearing 


6- Gamma-centered vs. shifted k-points


7-Using ibrav = 4  and listing a and c, vs. using ibrav = 0 and providing cell_parameters list



but nothing really seems to work.


Any suggestions are thoughts arevery appreciated. I provide below the input files for both primitive and conventional cells and I'm using version 6.2.1. I also provide the final magnetization of the ions in the conventional cell.



Best Regards,


Mostafa Youssef


AUC -  Egypt



# Input file for the primitive cell





   calculation =   'vc-relax'   ,


   verbosity = 'high' ,


   restart_mode = 'from_scratch' ,


   prefix='fe2o3' ,


   outdir='/data/mostafa/Fe2O3/fix_magnet_strucutre2/scratch/' ,


   pseudo_dir = '/home/mostafa/data/Fe2O3/PP' ,


   tstress = .true.  ,


   tprnfor= .true.  ,


   nstep = 2000 ,


   etot_conv_thr = 7.7D-6  ,


   forc_conv_thr = 4.0D-5 ,


 /


 


   ibrav = 0 ,


    nat  =  10 , 


   ntyp  =  3 , 


   nbnd  = 96 ,


  ecutwfc  =  90 ,


  ecutrho  =  1080 , 


  nosym =.true.


  occupations = 'fixed',


  nspin = 2 ,


  starting_magnetization(1)=1.0,


  starting_magnetization(2)=-1.0,


  tot_magnetization = 0


 /


 


    diagonalization='david',


    mixing_mode = 'plain' ,


    mixing_beta = 0.5,


    startingwfc = 'random',


    conv_thr  =  1.0d-9  , 


  /





    ion_dynamics='bfgs'


/





   cell_dynamics = 'bfgs' ,


   cell_dofree = 'all',


   press_conv_thr = 0.5 , ! This is the default


 /


CELL_PARAMETERS  angstrom


 5.4200    0.    0.


 3.08705000    4.45494300    0.


 3.08705000    1.61661600    4.15127400 


ATOMIC_SPECIES


Fe1  55.845 Fe.pbe-spn-rrkjus_psl.0.2.1.UPF


Fe2  55.845 Fe.pbe-spn-rrkjus_psl.0.2.1.UPF


O    15.999 O.pbe-n-rrkjus_psl.0.1.UPF


ATOMIC_POSITIONS crystal 


Fe1   0.14500  0.14500  0.14500


Fe1   0.85500  0.85500  0.85500


Fe2   0.35500  0.35500  0.35500


Fe2   0.64500  0.64500  0.64500


O 0.75000  0.45800  0.04200


O 0.95800  0.25000  0.54200


O 0.45800  0.04200  0.75000


O 0.25000  0.54200  0.95800


O 0.04200  0.75000  0.45800


O 0.54200  0.95800  0.25000 


K_POINTS automatic 


  4 4 4  1 1 1





# Conventional cell








   calculation =   'vc-relax'   ,


   verbosity = 'high' ,


   restart_mode = 'from_scratch' ,


   prefix='fe2o3' ,


   outdir='/data/mostafa/Fe2O3/fix_magnet_conventional_str3_gamma/scratch/' ,


   pseudo_dir = '/home/mostafa/data/Fe2O3/PP' ,


   tstress = .true.  ,


   tprnfor= .true.  ,


   nstep = 2000 ,


   etot_conv_thr