Re: [Wien] electron occupancy in dmatup/dn

2019-07-29 Thread Laurence Marks
I would say that it is a fair comment that some of the papers which have
not done a search (particularly for f electrons) may be wrong. As both
Fabien and Peter have said before, sometimes different spin states are
local minima. Unfortunately finding the global minimum when local minima
are present is computationally expensive -- no matter how one does it!

On Tue, Jul 30, 2019 at 1:02 AM prasad jayasena 
wrote:

> Dear wien2k community
>
> Following several literature, it looks this method of checking meta stable
> states is quite computationally demanding and time consuming. For my system
> with two uranium in 6+ and one uranium in 5+, there are many combinations
> to complete to find actual ground state following the procedure given in
> https://journals.aps.org/prb/pdf/10.1103/PhysRevB.79.235125
> 
> ( and in many other similar papers). This is very time consuming and I am
> very frustrated as this is not the main focus of my paper.
>
> Meantime, there are a lot of papers which has used Hubbard U and J without
> following these procedures to avoid metastable localization.
>
> Do you know any particular case or any good reason which one does not need
> to check metastability still using hubbard U? Or at least a shorter method
> than this?
>
> Thank you in advance.
>
> Prasad
>
>
> On Sunday, July 28, 2019, 1:54:37 p.m. CST, Peter Blaha <
> pbl...@theochem.tuwien.ac.at> wrote:
>
>
> The trace of the dmat is about 0.38 f electrons for the first atom. You
> should see the same number in the corresponding case.scf2  :QTL  line.
>
> It looks very small for U, in particular when you say that the other
> spin is similar, but I don't know any details.
> First thing to do is always a regular PBE calculations. What are your
> results there ?
>
> Please follow ALWAYS the recommended procedure:
>
> init -sp
> runsp
> save pbe
> x lapwdm -up/-dn
> runsp -orb
>
>
>
> Am 27.07.2019 um 22:00 schrieb prasad jayasena:
> > Dear wien2k experts
> >
> > I trying to understand density matrix in my calculation with wien2k and
> > I do not have a strong chemistry background.
> >
> > I went through several research papers and mailing list. In my
> > case.dmatdn file I find follows
> >
> >  1 atom density matrix
> >  3  0.00  0.00  0.00 L, Lx,Ly,Lz in global orthogonal
> system
> >   7.0912546943894E-02 0.0E+00
> > 0.0E+00 0.0E+00
> >  -3.6693845819671E-02 0.0E+00
> > 0.0E+00 0.0E+00
> >   2.4373528948560E-02 0.0E+00
> > 0.0E+00 0.0E+00
> >  -1.5075261658481E-02 0.0E+00
> >   0.0E+00 0.0E+00
> > 4.6390168314472E-02 0.0E+00
> >   0.0E+00 0.0E+00
> > 6.8288170705364E-03 0.0E+00
> >   0.0E+00 0.0E+00
> > 2.5065098115310E-02 0.0E+00
> >   0.0E+00 0.0E+00
> >  -3.6693845819671E-02 0.0E+00
> > 0.0E+00 0.0E+00
> >   4.9032881076530E-02 0.0E+00
> > 0.0E+00 0.0E+00
> >  -3.2624934826366E-03 0.0E+00
> > 0.0E+00 0.0E+00
> >   2.4373528948560E-02 0.0E+00
> >   0.0E+00 0.0E+00
> > 6.8288170705364E-03 0.0E+00
> >   0.0E+00 0.0E+00
> > 4.8251844354138E-02 0.0E+00
> >   0.0E+00 0.0E+00
> > 6.8288170705364E-03 0.0E+00
> >   0.0E+00 0.0E+00
> >   2.4373528948560E-02 0.0E+00
> > 0.0E+00 0.0E+00
> >  -3.2624934826366E-03 0.0E+00
> > 0.0E+00 0.0E+00
> >   4.9032881076530E-02 0.0E+00
> > 0.0E+00 0.0E+00
> >  -3.6693845819671E-02 0.0E+00
> >   0.0E+00 0.0E+00
> > 2.5065098115310E-02 0.0E+00
> >   0.0E+00 0.0E+00
> > 6.8288170705364E-03 0.0E+00
> >   0.0E+00 0.0E+00
> > 4.6390168314472E-02 0.0E+00
> >   0.0E+00 0.0E+00
> >  -1.5075261658481E-02 0.0E+00
> > 0.0E+00 0.0E+00
> >   2.4373528948560E-02 0.0E+00
> > 0.0E+00 0.0E+00
> >  -3.6693845819671E-02 

Re: [Wien] electron occupancy in dmatup/dn

2019-07-29 Thread prasad jayasena
 
Dear prof. Peter and Tran 

Thank you very much for your guidance. I went through the paper Dr. Tran 
mentioned (and several other papers of course) to understand occupation matrix. 
It was very helpful and I could grab diagonal occupation matrix. I am still 
confused with the way defining off-diagonal matrix. I m continuing reading to 
understand the way it is taken. Meanwhile I want to continue the calculation 
for diagonal case. 

In my case there are two uranium atoms with U5+ and U6+ configuration, (which 
means 5f0 6d1 7s0  and 5f0 6d0 7s0 electron configuration). Thus I believe I 
have to consider only "five" diagonal elements (for U5+)  and hope no need for 
U6+ atom. 

However I could not understand the calculation procedure. In their paper they 
said " we impose one particular diagonal occu-pation matrix during the first 10 
steps of the first self-consistent cycle. This constraint is then lifted and 
the calculation is left to converge on its own. " 

My question is where I have to put the occupation matrix and with what values I 
have to go with after the 10th iteration?




Prof. Peter
I am not sure why, but my scf output files does not show any QTL 
(case.dmatup/dn files are empty) value. Is this because the calculation wrong? 
I will redo this and will let you know.

Thank you again.
Prasad
On Sunday, July 28, 2019, 1:54:37 p.m. CST, Peter Blaha 
 wrote:  
 
 The trace of the dmat is about 0.38 f electrons for the first atom. You 
should see the same number in the corresponding case.scf2  :QTL  line.

It looks very small for U, in particular when you say that the other 
spin is similar, but I don't know any details.
First thing to do is always a regular PBE calculations. What are your 
results there ?

Please follow ALWAYS the recommended procedure:

init -sp
runsp
save pbe
x lapwdm -up/-dn
runsp -orb



Am 27.07.2019 um 22:00 schrieb prasad jayasena:
> Dear wien2k experts
> 
> I trying to understand density matrix in my calculation with wien2k and 
> I do not have a strong chemistry background.
> 
> I went through several research papers and mailing list. In my 
> case.dmatdn file I find follows
> 
>      1 atom density matrix
>      3  0.00  0.00  0.00 L, Lx,Ly,Lz in global orthogonal system
>   7.0912546943894E-02 0.0E+00      
> 0.0E+00 0.0E+00
>      -3.6693845819671E-02 0.0E+00      
> 0.0E+00 0.0E+00
>   2.4373528948560E-02 0.0E+00      
> 0.0E+00 0.0E+00
>      -1.5075261658481E-02 0.0E+00
>   0.0E+00 0.0E+00      
> 4.6390168314472E-02 0.0E+00
>   0.0E+00 0.0E+00      
> 6.8288170705364E-03 0.0E+00
>   0.0E+00 0.0E+00      
> 2.5065098115310E-02 0.0E+00
>   0.0E+00 0.0E+00
>      -3.6693845819671E-02 0.0E+00      
> 0.0E+00 0.0E+00
>   4.9032881076530E-02 0.0E+00      
> 0.0E+00 0.0E+00
>      -3.2624934826366E-03 0.0E+00      
> 0.0E+00 0.0E+00
>   2.4373528948560E-02 0.0E+00
>   0.0E+00 0.0E+00      
> 6.8288170705364E-03 0.0E+00
>   0.0E+00 0.0E+00      
> 4.8251844354138E-02 0.0E+00
>   0.0E+00 0.0E+00      
> 6.8288170705364E-03 0.0E+00
>   0.0E+00 0.0E+00
>   2.4373528948560E-02 0.0E+00      
> 0.0E+00 0.0E+00
>      -3.2624934826366E-03 0.0E+00      
> 0.0E+00 0.0E+00
>   4.9032881076530E-02 0.0E+00      
> 0.0E+00 0.0E+00
>      -3.6693845819671E-02 0.0E+00
>   0.0E+00 0.0E+00      
> 2.5065098115310E-02 0.0E+00
>   0.0E+00 0.0E+00      
> 6.8288170705364E-03 0.0E+00
>   0.0E+00 0.0E+00      
> 4.6390168314472E-02 0.0E+00
>   0.0E+00 0.0E+00
>      -1.5075261658481E-02 0.0E+00      
> 0.0E+00 0.0E+00
>   2.4373528948560E-02 0.0E+00      
> 0.0E+00 0.0E+00
>      -3.6693845819671E-02 0.0E+00      
> 0.0E+00 0.0E+00
>   7.0912546943894E-02 0.0E+00
>      2 atom density matrix
>      3  0.00  0.00  0.00 L, Lx,Ly,Lz in global orthogonal system
>   8.5906248781523E-02 0.0E+00      
> 

Re: [Wien] electron occupancy in dmatup/dn

2019-07-28 Thread Peter Blaha
The trace of the dmat is about 0.38 f electrons for the first atom. You 
should see the same number in the corresponding case.scf2  :QTL  line.


It looks very small for U, in particular when you say that the other 
spin is similar, but I don't know any details.
First thing to do is always a regular PBE calculations. What are your 
results there ?


Please follow ALWAYS the recommended procedure:

init -sp
runsp
save pbe
x lapwdm -up/-dn
runsp -orb



Am 27.07.2019 um 22:00 schrieb prasad jayasena:

Dear wien2k experts

I trying to understand density matrix in my calculation with wien2k and 
I do not have a strong chemistry background.


I went through several research papers and mailing list. In my 
case.dmatdn file I find follows


     1 atom density matrix
     3  0.00  0.00  0.00 L, Lx,Ly,Lz in global orthogonal system
  7.0912546943894E-02 0.0E+00   
0.0E+00 0.0E+00
     -3.6693845819671E-02 0.0E+00   
0.0E+00 0.0E+00
  2.4373528948560E-02 0.0E+00   
0.0E+00 0.0E+00

     -1.5075261658481E-02 0.0E+00
  0.0E+00 0.0E+00   
4.6390168314472E-02 0.0E+00
  0.0E+00 0.0E+00   
6.8288170705364E-03 0.0E+00
  0.0E+00 0.0E+00   
2.5065098115310E-02 0.0E+00

  0.0E+00 0.0E+00
     -3.6693845819671E-02 0.0E+00   
0.0E+00 0.0E+00
  4.9032881076530E-02 0.0E+00   
0.0E+00 0.0E+00
     -3.2624934826366E-03 0.0E+00   
0.0E+00 0.0E+00

  2.4373528948560E-02 0.0E+00
  0.0E+00 0.0E+00   
6.8288170705364E-03 0.0E+00
  0.0E+00 0.0E+00   
4.8251844354138E-02 0.0E+00
  0.0E+00 0.0E+00   
6.8288170705364E-03 0.0E+00

  0.0E+00 0.0E+00
  2.4373528948560E-02 0.0E+00   
0.0E+00 0.0E+00
     -3.2624934826366E-03 0.0E+00   
0.0E+00 0.0E+00
  4.9032881076530E-02 0.0E+00   
0.0E+00 0.0E+00

     -3.6693845819671E-02 0.0E+00
  0.0E+00 0.0E+00   
2.5065098115310E-02 0.0E+00
  0.0E+00 0.0E+00   
6.8288170705364E-03 0.0E+00
  0.0E+00 0.0E+00   
4.6390168314472E-02 0.0E+00

  0.0E+00 0.0E+00
     -1.5075261658481E-02 0.0E+00   
0.0E+00 0.0E+00
  2.4373528948560E-02 0.0E+00   
0.0E+00 0.0E+00
     -3.6693845819671E-02 0.0E+00   
0.0E+00 0.0E+00

  7.0912546943894E-02 0.0E+00
     2 atom density matrix
     3  0.00  0.00  0.00 L, Lx,Ly,Lz in global orthogonal system
  8.5906248781523E-02 0.0E+00   
0.0E+00 0.0E+00
  5.4581969618945E-03 1.8856396999089E-03   
0.0E+00 0.0E+00
  1.0378050531245E-02    -2.2716253233185E-02   
0.0E+00 0.0E+00

  2.1585329456663E-02    -3.9012706370743E-03
  0.0E+00 0.0E+00   
2.2489193790070E-02 0.0E+00
  0.0E+00 0.0E+00   
1.6453501908921E-03 1.5069057876921E-03
  0.0E+00 0.0E+00   
6.1272311195482E-03    -1.4717284041324E-02

  0.0E+00 0.0E+00
  5.4581969618945E-03    -1.8856396999089E-03   
0.0E+00 0.0E+00
  7.7904615518187E-02 0.0E+00   
0.0E+00 0.0E+00
  9.4486884160162E-03 9.5873755403030E-03   
0.0E+00 0.0E+00

  1.0378050531245E-02    -2.2716253233185E-02
  0.0E+00 0.0E+00   
1.6453501908921E-03    -1.5069057876921E-03
  0.0E+00 0.0E+00   
1.5206949708353E-01 0.0E+00
  0.0E+00 0.0E+00   
1.6453501908921E-03 1.5069057876921E-03

  0.0E+00 0.0E+00
  1.0378050531245E-02 2.2716253233185E-02   
0.0E+00 0.0E+00
  9.4486884160162E-03    -9.5873755403030E-03   

Re: [Wien] electron occupancy in dmatup/dn

2019-07-28 Thread tran

Hi,

With DFT+U, it is usually possible to stabilize many different
electronic states for f-systems.
If you don't already know this paper, then it may be useful.
https://journals.aps.org/prb/pdf/10.1103/PhysRevB.79.235125

FT

On Saturday 2019-07-27 22:00, prasad jayasena wrote:


Date: Sat, 27 Jul 2019 22:00:10
From: prasad jayasena 
Reply-To: A Mailing list for WIEN2k users 
To: A. Mailing List for WIEN2k Users 
Subject: [Wien] electron occupancy in dmatup/dn

Dear wien2k experts

I trying to understand density matrix in my calculation with wien2k and I do 
not have a strong chemistry background.

I went through several research papers and mailing list. In my case.dmatdn file 
I find follows

    1 atom density matrix
    3  0.00  0.00  0.00 L, Lx,Ly,Lz in global orthogonal system
 7.0912546943894E-02 0.0E+00   0.0E+00 
0.0E+00
    -3.6693845819671E-02 0.0E+00   0.0E+00 
0.0E+00
 2.4373528948560E-02 0.0E+00   0.0E+00 
0.0E+00
    -1.5075261658481E-02 0.0E+00
 0.0E+00 0.0E+00   4.6390168314472E-02 
0.0E+00
 0.0E+00 0.0E+00   6.8288170705364E-03 
0.0E+00
 0.0E+00 0.0E+00   2.5065098115310E-02 
0.0E+00
 0.0E+00 0.0E+00
    -3.6693845819671E-02 0.0E+00   0.0E+00 
0.0E+00
 4.9032881076530E-02 0.0E+00   0.0E+00 
0.0E+00
    -3.2624934826366E-03 0.0E+00   0.0E+00 
0.0E+00
 2.4373528948560E-02 0.0E+00
 0.0E+00 0.0E+00   6.8288170705364E-03 
0.0E+00
 0.0E+00 0.0E+00   4.8251844354138E-02 
0.0E+00
 0.0E+00 0.0E+00   6.8288170705364E-03 
0.0E+00
 0.0E+00 0.0E+00
 2.4373528948560E-02 0.0E+00   0.0E+00 
0.0E+00
    -3.2624934826366E-03 0.0E+00   0.0E+00 
0.0E+00
 4.9032881076530E-02 0.0E+00   0.0E+00 
0.0E+00
    -3.6693845819671E-02 0.0E+00
 0.0E+00 0.0E+00   2.5065098115310E-02 
0.0E+00
 0.0E+00 0.0E+00   6.8288170705364E-03 
0.0E+00
 0.0E+00 0.0E+00   4.6390168314472E-02 
0.0E+00
 0.0E+00 0.0E+00
    -1.5075261658481E-02 0.0E+00   0.0E+00 
0.0E+00
 2.4373528948560E-02 0.0E+00   0.0E+00 
0.0E+00
    -3.6693845819671E-02 0.0E+00   0.0E+00 
0.0E+00
 7.0912546943894E-02 0.0E+00
    2 atom density matrix
    3  0.00  0.00  0.00 L, Lx,Ly,Lz in global orthogonal system
 8.5906248781523E-02 0.0E+00   0.0E+00 
0.0E+00
 5.4581969618945E-03 1.8856396999089E-03   0.0E+00 
0.0E+00
 1.0378050531245E-02    -2.2716253233185E-02   0.0E+00 
0.0E+00
 2.1585329456663E-02    -3.9012706370743E-03
 0.0E+00 0.0E+00   2.2489193790070E-02 
0.0E+00
 0.0E+00 0.0E+00   1.6453501908921E-03 
1.5069057876921E-03
 0.0E+00 0.0E+00   6.1272311195482E-03    
-1.4717284041324E-02
 0.0E+00 0.0E+00
 5.4581969618945E-03    -1.8856396999089E-03   0.0E+00 
0.0E+00
 7.7904615518187E-02 0.0E+00   0.0E+00 
0.0E+00
 9.4486884160162E-03 9.5873755403030E-03   0.0E+00 
0.0E+00
 1.0378050531245E-02    -2.2716253233185E-02
 0.0E+00 0.0E+00   1.6453501908921E-03    
-1.5069057876921E-03
 0.0E+00 0.0E+00   1.5206949708353E-01 
0.0E+00
 0.0E+00 0.0E+00   1.6453501908921E-03 
1.5069057876921E-03
 0.0E+00 0.0E+00
 1.0378050531245E-02 2.2716253233185E-02   0.0E+00 
0.0E+00
 9.4486884160162E-03    -9.5873755403030E-03   0.0E+00 
0.0E+00
 7.7904615518187E-02 0.0E+00