Surely enough, this SQL: SELECT t2.rental_id, t2.rental_date, t1.film_id, t3.title, t4.category_id, t5."name" FROM rental t2 LEFT OUTER JOIN inventory t1 ON ( t1.inventory_id = t2.inventory_id ) LEFT OUTER JOIN film t3 ON ( t3.film_id = t1.film_id ) LEFT OUTER JOIN film_category t4 ON ( t4.film_id = t1.film_id ) LEFT OUTER JOIN category t5 ON ( t5.category_id = t4.category_id ) ;
generates the desired xBestIndex call: jmpvtab BEST INDEX: Table: inventory nConstraints: 3 CONST[0]: 0 (inventory_id) = Usable CONST[1]: 1 (film_id) = Usable CONST[2]: 1 (film_id) = Usable allowing the "first constraint" heuristic to be successful. So, in the case where my application is generating SQL, I can fix it so that the ON is generated in the helpful order. But I also let users type in their own SQL. Would it be too much to ask SQLite to determine <needed> vs. <supplied> based on context rather than inferring based on position? I'm looking at SQL In a Nutshell, 3rd Edition, page 353, and the JOIN syntax example shows the ON statements in the order SQLite dislikes. Thanks very much! Eric -----Original Message----- From: sqlite-users-bounces at mailinglists.sqlite.org [mailto:sqlite-users-boun...@mailinglists.sqlite.org] On Behalf Of Hick Gunter Sent: Monday, June 08, 2015 10:21 AM To: 'General Discussion of SQLite Database' Subject: Re: [sqlite] Virtual Table query - why isn't SQLite using my indexes? Can you try changing LHS and RHS in the first ON expression? The older, larger query has inventory_id on the LHS and film_id on the RHS. Now you have all fields on the RHS. It would seem the QP may be inferring <ltable> LEFT OUTER JOIN <rtable> ON (<needed> = <supplied>) And placing the <needed> fields first in the argument list And adding the <supplied> fields only for symmetry reasons (they can never be used, because they point the "wrong way") -----Urspr?ngliche Nachricht----- Von: Eric Hill [mailto:Eric.Hill at jmp.com] Gesendet: Montag, 08. Juni 2015 15:55 An: General Discussion of SQLite Database Betreff: Re: [sqlite] Virtual Table query - why isn't SQLite using my indexes? Revisiting a thread from about 3 weeks back, I have another xBestIndex puzzler. The example query from that thread was: SELECT t1.rental_date, t1.inventory_id, t8.film_id, t5.title AS Title, t3."name" AS Category, t4.customer_id, t4.store_id, t4.email, t5.length FROM rental t1 LEFT OUTER JOIN inventory t8 ON ( t8.inventory_id = t1.inventory_id ) LEFT OUTER JOIN customer t4 ON ( t4.customer_id = t1.customer_id ) LEFT OUTER JOIN film_category t7 ON ( t7.film_id = t8.film_id ) LEFT OUTER JOIN film t5 ON ( t5.film_id = t8.film_id ) LEFT OUTER JOIN category t3 ON ( t3.category_id = t7.category_id ) LEFT OUTER JOIN film_actor t6 ON ( t6.film_id = t5.film_id ) LEFT OUTER JOIN actor t2 ON ( t2.actor_id = t6.actor_id ) ; The "money" call to xBestIndex in that case looked like this: jmpvtab BEST INDEX: Table: inventory nConstraints: 3 CONST[0]: 0 (inventory_id) = Usable CONST[1]: 1 (film_id) = Usable CONST[2]: 1 (film_id) = Usable In response to this, I originally promised to create an index using all 3 constraints (two if which are the same), but SQLite rejected that and did a table scan instead, because it really only needed an index based on inventory_id. So the heuristic we ended up with, which did fix this specific query, was (from Gunter): > If you know nothing about a table except for the names of the fields > and the number of rows, then you are best off choosing the first > constraint only. (rows = cost = log n) Well, now I have a counter-example. This time, the SQL looks like this: SELECT t2.rental_id, t2.rental_date, t1.film_id, t3.title, t4.category_id, t5."name" FROM rental t2 LEFT OUTER JOIN inventory t1 ON ( t2.inventory_id = t1.inventory_id ) LEFT OUTER JOIN film t3 ON ( t3.film_id = t1.film_id ) LEFT OUTER JOIN film_category t4 ON ( t4.film_id = t1.film_id ) LEFT OUTER JOIN category t5 ON ( t5.category_id = t4.category_id ) ; For whatever reason, the "money" call to xBestIndex in this case looks like this: jmpvtab BEST INDEX: Table: inventory nConstraints: 3 CONST[0]: 1 (film_id) = Usable CONST[1]: 1 (film_id) = Usable CONST[2]: 0 (inventory_id) = Usable The order of the constraints is different! So, using the "first constraint" heuristic, I commit to indexing based on film_id, but indexing inventory on film_id not helpful for this query. SQLite sees that inventory is indexed on film_id and decides to use table scan for inventory, and it's game over. If SQLite calls to xBestIndex do not in some way convey which constraints matter and which ones don't, I don't see how I can use virtual tables. Here is the WhereTrace, in case it might help: *** Optimizer Start *** add: * 0.01.00 sqlite_master f 00100 N 0 cost 0,216,200 0 0.01.00 sqlite_master f 00100 N 0 cost 0,216,200 ---- begin solver. (nRowEst=0) New 0 cost=216,200 order=0 ---- after round 0 ---- 0 cost=216 nrow=200 order=0 ---- begin solver. (nRowEst=201) New 0 cost=216,200 order=1 ---- after round 0 ---- 0 cost=216 nrow=200 order=1 rev=0x0 ---- Solution nRow=200 ORDERBY=1,0x0 0 0.01.00 sqlite_master f 00100 N 0 cost 0,216,200 *** Optimizer Finished *** *** Optimizer Start *** ---- Solution nRow=1 0 0.01.00 sqlite_master f 01101 N 1 cost 0,33,1 *** Optimizer Finished *** *** Optimizer Start *** add: * 0.01.00 sqlite_master f 04000 N 1 cost 271,53,43 skip: * 0.01.00 sqlite_master f 04000 N 1 cost 271,53,43 add: * 0.01.00 sqlite_master f 00100 N 0 cost 0,216,180 0 0.01.00 sqlite_master f 04000 N 1 cost 271,53,43 1 0.01.00 sqlite_master f 00100 N 0 cost 0,216,180 ---- begin solver. (nRowEst=0) New 0 cost=271, 43 order=0 Update 1 cost=216,180 order=0 was 0 cost=271, 43 order=0 ---- after round 0 ---- 1 cost=216 nrow=180 order=0 ---- begin solver. (nRowEst=181) ---- sort cost=239 (1/1) increases cost 271 to 272 New 0 cost=272, 43 order=0 Update 1 cost=216,180 order=1 was 0 cost=272, 43 order=0 ---- after round 0 ---- 1 cost=216 nrow=180 order=1 rev=0x0 ---- Solution nRow=180 ORDERBY=1,0x0 1 0.01.00 sqlite_master f 00100 N 0 cost 0,216,180 *** Optimizer Finished *** *** Optimizer Start *** ---- Solution nRow=1 0 0.01.00 sqlite_master f 01101 N 1 cost 0,33,1 *** Optimizer Finished *** *** Optimizer Start *** ---- Solution nRow=1 0 0.01.00 sqlite_master f 01101 N 1 cost 0,33,1 *** Optimizer Finished *** *** Optimizer Start *** add: * 0.01.00 sqlite_master f 04000 N 1 cost 271,53,43 skip: * 0.01.00 sqlite_master f 04000 N 1 cost 271,53,43 add: * 0.01.00 sqlite_master f 00100 N 0 cost 0,216,180 0 0.01.00 sqlite_master f 04000 N 1 cost 271,53,43 1 0.01.00 sqlite_master f 00100 N 0 cost 0,216,180 ---- begin solver. (nRowEst=0) New 0 cost=271, 43 order=0 Update 1 cost=216,180 order=0 was 0 cost=271, 43 order=0 ---- after round 0 ---- 1 cost=216 nrow=180 order=0 ---- begin solver. (nRowEst=181) ---- sort cost=239 (1/1) increases cost 271 to 272 New 0 cost=272, 43 order=0 Update 1 cost=216,180 order=1 was 0 cost=272, 43 order=0 ---- after round 0 ---- 1 cost=216 nrow=180 order=1 rev=0x0 ---- Solution nRow=180 ORDERBY=1,0x0 1 0.01.00 sqlite_master f 00100 N 0 cost 0,216,180 *** Optimizer Finished *** *** Optimizer Start *** ---- Solution nRow=1 0 0.01.00 sqlite_master f 01101 N 1 cost 0,33,1 *** Optimizer Finished *** *** Optimizer Start *** ---- Solution nRow=1 0 0.01.00 sqlite_master f 01101 N 1 cost 0,33,1 *** Optimizer Finished *** *** Optimizer Start *** add: * 0.01.00 sqlite_master f 04000 N 1 cost 271,53,43 skip: * 0.01.00 sqlite_master f 04000 N 1 cost 271,53,43 add: * 0.01.00 sqlite_master f 00100 N 0 cost 0,216,180 0 0.01.00 sqlite_master f 04000 N 1 cost 271,53,43 1 0.01.00 sqlite_master f 00100 N 0 cost 0,216,180 ---- begin solver. (nRowEst=0) New 0 cost=271, 43 order=0 Update 1 cost=216,180 order=0 was 0 cost=271, 43 order=0 ---- after round 0 ---- 1 cost=216 nrow=180 order=0 ---- begin solver. (nRowEst=181) ---- sort cost=239 (1/1) increases cost 271 to 272 New 0 cost=272, 43 order=0 Update 1 cost=216,180 order=1 was 0 cost=272, 43 order=0 ---- after round 0 ---- 1 cost=216 nrow=180 order=1 rev=0x0 ---- Solution nRow=180 ORDERBY=1,0x0 1 0.01.00 sqlite_master f 00100 N 0 cost 0,216,180 *** Optimizer Finished *** *** Optimizer Start *** ---- Solution nRow=1 0 0.01.00 sqlite_master f 01101 N 1 cost 0,33,1 *** Optimizer Finished *** *** Optimizer Start *** ---- Solution nRow=1 0 0.01.00 sqlite_master f 01101 N 1 cost 0,33,1 *** Optimizer Finished *** *** Optimizer Start *** add: * 0.01.00 sqlite_master f 04000 N 1 cost 271,53,43 skip: * 0.01.00 sqlite_master f 04000 N 1 cost 271,53,43 add: * 0.01.00 sqlite_master f 00100 N 0 cost 0,216,180 0 0.01.00 sqlite_master f 04000 N 1 cost 271,53,43 1 0.01.00 sqlite_master f 00100 N 0 cost 0,216,180 ---- begin solver. (nRowEst=0) New 0 cost=271, 43 order=0 Update 1 cost=216,180 order=0 was 0 cost=271, 43 order=0 ---- after round 0 ---- 1 cost=216 nrow=180 order=0 ---- begin solver. (nRowEst=181) ---- sort cost=239 (1/1) increases cost 271 to 272 New 0 cost=272, 43 order=0 Update 1 cost=216,180 order=1 was 0 cost=272, 43 order=0 ---- after round 0 ---- 1 cost=216 nrow=180 order=1 rev=0x0 ---- Solution nRow=180 ORDERBY=1,0x0 1 0.01.00 sqlite_master f 00100 N 0 cost 0,216,180 *** Optimizer Finished *** *** Optimizer Start *** ---- Solution nRow=1 0 0.01.00 sqlite_master f 01101 N 1 cost 0,33,1 *** Optimizer Finished *** *** Optimizer Start *** ---- Solution nRow=1 0 0.01.00 sqlite_master f 01101 N 1 cost 0,33,1 *** Optimizer Finished *** *** Optimizer Start *** add: * 0.01.00 sqlite_master f 04000 N 1 cost 271,53,43 skip: * 0.01.00 sqlite_master f 04000 N 1 cost 271,53,43 add: * 0.01.00 sqlite_master f 00100 N 0 cost 0,216,180 0 0.01.00 sqlite_master f 04000 N 1 cost 271,53,43 1 0.01.00 sqlite_master f 00100 N 0 cost 0,216,180 ---- begin solver. (nRowEst=0) New 0 cost=271, 43 order=0 Update 1 cost=216,180 order=0 was 0 cost=271, 43 order=0 ---- after round 0 ---- 1 cost=216 nrow=180 order=0 ---- begin solver. (nRowEst=181) ---- sort cost=239 (1/1) increases cost 271 to 272 New 0 cost=272, 43 order=0 Update 1 cost=216,180 order=1 was 0 cost=272, 43 order=0 ---- after round 0 ---- 1 cost=216 nrow=180 order=1 rev=0x0 ---- Solution nRow=180 ORDERBY=1,0x0 1 0.01.00 sqlite_master f 00100 N 0 cost 0,216,180 *** Optimizer Finished *** *** Optimizer Start *** ---- Solution nRow=1 0 0.01.00 sqlite_master f 01101 N 1 cost 0,33,1 *** Optimizer Finished *** *** Optimizer Start *** constraint[0]: col=2 termid=0 op=2 usabled=0 usage[0]: argvIdx=0 omit=0 idxNum=-999 idxStr= orderByConsumed=0 estimatedCost=2.5741e+08 estimatedRows=16044 add: * 0.01.00 t2 (-999,0) f 00400 N 0 cost 0,279,139 constraint[0]: col=2 termid=0 op=2 usabled=1 usage[0]: argvIdx=1 omit=1 idxNum=0 idxStr= orderByConsumed=0 estimatedCost=67470 estimatedRows=4 add: * 0.01.03 t2 (0,1) f 00400 N 1 cost 0,160,20 constraint[0]: col=1 termid=5 op=2 usabled=0 constraint[1]: col=1 termid=6 op=2 usabled=0 constraint[2]: col=0 termid=7 op=2 usabled=0 usage[0]: argvIdx=0 omit=0 usage[1]: argvIdx=0 omit=0 usage[2]: argvIdx=0 omit=0 idxNum=-999 idxStr= orderByConsumed=0 estimatedCost=2.09856e+07 estimatedRows=4581 add: * 1.02.01 t1 (-999,0) f 00400 N 0 cost 0,243,120 constraint[0]: col=1 termid=5 op=2 usabled=1 constraint[1]: col=1 termid=6 op=2 usabled=1 constraint[2]: col=0 termid=7 op=2 usabled=1 usage[0]: argvIdx=1 omit=1 usage[1]: argvIdx=0 omit=0 usage[2]: argvIdx=0 omit=0 idxNum=0 idxStr= orderByConsumed=0 estimatedCost=16770.9 estimatedRows=3 add: * 1.02.0f t1 (0,1) f 00400 N 1 cost 0,140,16 constraint[0]: col=0 termid=1 op=2 usabled=0 usage[0]: argvIdx=0 omit=0 idxNum=-999 idxStr= orderByConsumed=0 estimatedCost=1e+06 estimatedRows=1000 add: * 2.04.03 t3 (-999,0) f 00400 N 0 cost 0,199,99 constraint[0]: col=0 termid=1 op=2 usabled=1 usage[0]: argvIdx=1 omit=1 idxNum=0 idxStr= orderByConsumed=0 estimatedCost=3000 estimatedRows=3 replace: * 2.04.03 t3 (-999,0) f 00400 N 0 cost 0,199,99 add: * 2.04.03 t3 (0,1) f 00400 N 1 cost 0,115,16 constraint[0]: col=0 termid=2 op=2 usabled=0 constraint[1]: col=1 termid=4 op=2 usabled=0 usage[0]: argvIdx=0 omit=0 usage[1]: argvIdx=0 omit=0 idxNum=-999 idxStr= orderByConsumed=0 estimatedCost=1e+06 estimatedRows=1000 add: * 3.08.07 t4 (-999,0) f 00400 N 0 cost 0,199,99 constraint[0]: col=0 termid=2 op=2 usabled=1 constraint[1]: col=1 termid=4 op=2 usabled=1 usage[0]: argvIdx=1 omit=1 usage[1]: argvIdx=0 omit=0 idxNum=0 idxStr= orderByConsumed=0 estimatedCost=3000 estimatedRows=3 replace: * 3.08.07 t4 (-999,0) f 00400 N 0 cost 0,199,99 add: * 3.08.07 t4 (0,1) f 00400 N 1 cost 0,115,16 constraint[0]: col=0 termid=3 op=2 usabled=0 usage[0]: argvIdx=0 omit=0 idxNum=-999 idxStr= orderByConsumed=0 estimatedCost=256 estimatedRows=16 add: * 4.10.0f t5 (-999,0) f 00400 N 0 cost 0,80,40 constraint[0]: col=0 termid=3 op=2 usabled=1 usage[0]: argvIdx=1 omit=1 idxNum=0 idxStr= orderByConsumed=0 estimatedCost=19.2659 estimatedRows=1 replace: * 4.10.0f t5 (-999,0) f 00400 N 0 cost 0,80,40 add: * 4.10.0f t5 (0,1) f 00400 N 1 cost 0,42,0 0 0.01.00 t2 (-999,0) f 00400 N 0 cost 0,279,139 1 0.01.03 t2 (0,1) f 00400 N 1 cost 0,160,20 2 1.02.01 t1 (-999,0) f 00400 N 0 cost 0,243,120 3 1.02.0f t1 (0,1) f 00400 N 1 cost 0,140,16 4 2.04.03 t3 (0,1) f 00400 N 1 cost 0,115,16 5 3.08.07 t4 (0,1) f 00400 N 1 cost 0,115,16 6 4.10.0f t5 (0,1) f 00400 N 1 cost 0,42,0 ---- begin solver. (nRowEst=0) New 0 cost=279,139 order=0 ---- after round 0 ---- 0 cost=279 nrow=139 order=0 New 02 cost=382,259 order=0 ---- after round 1 ---- 02 cost=382 nrow=259 order=0 New 024 cost=389,275 order=0 ---- after round 2 ---- 024 cost=389 nrow=275 order=0 New 0245 cost=400,291 order=0 ---- after round 3 ---- 0245 cost=400 nrow=291 order=0 New 02456 cost=400,291 order=0 ---- after round 4 ---- 02456 cost=400 nrow=291 order=0 ---- Solution nRow=291 0 0.01.00 t2 (-999,0) f 00400 N 0 cost 0,279,139 2 1.02.01 t1 (-999,0) f 00400 N 0 cost 0,243,120 4 2.04.03 t3 (0,1) f 00400 N 1 cost 0,115,16 5 3.08.07 t4 (0,1) f 00400 N 1 cost 0,115,16 6 4.10.0f t5 (0,1) f 00400 N 1 cost 0,42,0 *** Optimizer Finished *** Thanks, Eric _______________________________________________ sqlite-users mailing list sqlite-users at mailinglists.sqlite.org http://mailinglists.sqlite.org/cgi-bin/mailman/listinfo/sqlite-users ___________________________________________ Gunter Hick Software Engineer Scientific Games International GmbH FN 157284 a, HG Wien Klitschgasse 2-4, A-1130 Vienna, Austria Tel: +43 1 80100 0 E-Mail: hick at scigames.at This communication (including any attachments) is intended for the use of the intended recipient(s) only and may contain information that is confidential, privileged or legally protected. Any unauthorized use or dissemination of this communication is strictly prohibited. If you have received this communication in error, please immediately notify the sender by return e-mail message and delete all copies of the original communication. Thank you for your cooperation. _______________________________________________ sqlite-users mailing list sqlite-users at mailinglists.sqlite.org http://mailinglists.sqlite.org/cgi-bin/mailman/listinfo/sqlite-users