The attached file contains the test for the lib.lex.comparison algorithm (lexicographical_compare).
With best wishes, Anton Pevtsov
/*************************************************************************** * * lex_comparison.cpp - test exercising 25.3.8 [lib.lex.comparison] * * $Id: //stdlib/dev/tests/stdlib/algorithm/lex_comparison.cpp#7 $ * *************************************************************************** * * Copyright (c) 1994-2005 Quovadx, Inc., acting through its Rogue Wave * Software division. Licensed under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance with the * License. You may obtain a copy of the License at * http://www.apache.org/licenses/LICENSE-2.0. Unless required by * applicable law or agreed to in writing, software distributed under * the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, either express or implied. See the License * for the specific language governing permissions and limitations under * the License. * **************************************************************************/ #include <algorithm> // for lexicographical_compare #include <cstring> // for strlen, size_t #include <alg_test.h> #include <driver.h> // for rw_test() /**************************************************************************/ _RWSTD_NAMESPACE (std) { #ifndef _RWSTD_NO_EXPLICIT_INSTANTIATION // explicitly instantiate on types with minimum features // to verify that the algorithm imposes no requirements // beyond those specified template bool lexicographical_compare (InputIter<lt_comp<base<> > >, InputIter<lt_comp<base<> > >, InputIter<lt_comp<base<> > >, InputIter<lt_comp<base<> > >); template bool lexicographical_compare (InputIter<base<> >, InputIter<base<> >, InputIter<base<> >, InputIter<base<> >, binary_predicate<base<> >); #endif // _RWSTD_NO_EXPLICIT_INSTANTIATION } // namespace std /**************************************************************************/ template <class T> struct Less { static std::size_t funcalls_; // dummy arguments provided to prevent the class from being // default constructible and implicit conversion from int Less (int /* dummy */, int /* dummy */) { funcalls_ = 0; } // return a type other than bool but one that is implicitly // convertible to bool to detect incorrect assumptions conv_to_bool operator() (const T &x, const T &y) /* non-const */ { ++funcalls_; return conv_to_bool::make (x.val_ < y.val_); } static const char* name () { return "Less"; } private: void operator= (Less&); // not assignable }; template<class T> std::size_t Less<T>::funcalls_; /**************************************************************************/ // exercise lexicographical_compare 25.3.8 template <class T, class InputIterator1, class InputIterator2, class Predicate> void test_lex_compare (int line, const char *src1, const char *src2, bool res, const InputIterator1 &it1, const InputIterator2 &it2, const T*, const Predicate *ppred) { _RWSTD_UNUSED(ppred); const char* const it1name = type_name (it1, (T*)0); const char* const it2name = type_name (it2, (T*)0); const char* const fname = "lexicographical_compare"; const char* const funname = Predicate::name(); const std::size_t nsrc1 = std::strlen (src1); const std::size_t nsrc2 = std::strlen (src2); T* const xsrc1 = T::from_char (src1, nsrc1); T* const xsrc2 = T::from_char (src2, nsrc2); T* const xsrc1_end = xsrc1 + nsrc1; T* const xsrc2_end = xsrc2 + nsrc2; const InputIterator1 first1 = make_iter (xsrc1, xsrc1, xsrc1_end, it1); const InputIterator1 last1 = make_iter (xsrc1_end, xsrc1, xsrc1_end, it1); const InputIterator2 first2 = make_iter (xsrc2, xsrc2, xsrc2_end, it2); const InputIterator2 last2 = make_iter (xsrc2_end, xsrc2, xsrc2_end, it2); Predicate pred (0, 0); const std::size_t last_n_op_lt = T::n_total_op_lt_; bool result = ppred ? std::lexicographical_compare (first1, last1, first2, last2, pred) : std::lexicographical_compare (first1, last1, first2, last2); // verify the returned value 25.3.8, p1 and p3: If two sequences have // the same number of elements and their corresponding elements are // equivalent, then neither sequence is // lexicographically less than the other. rw_assert (res == result, 0, line, "line %d: %s<%s, %s%{?}, %s%{;}> (\"%s\", \"%s\", ...) " "== %b, got %b", __LINE__, fname, it1name, it2name, ppred, funname, src1, src2, res, result); std::size_t n_ops_lt = ppred ? Predicate::funcalls_ : T::n_total_op_lt_ - last_n_op_lt; // verify the complexity 25.3.8, p2 std::size_t n_exp_ops = 2 * (nsrc1 < nsrc2 ? nsrc1 : nsrc2); rw_assert (n_ops_lt <= n_exp_ops, 0, line, "line %d: %s<%s, %s%{?}, %s%{;}> (\"%s\", \"%s\", ...) " "complexity: got %zu, expected no more than %zu", __LINE__, fname, it1name, it2name, ppred, funname, src1, src2, n_ops_lt, n_exp_ops); delete[] xsrc1; delete[] xsrc2; } template <class T, class InputIterator1, class InputIterator2, class Predicate> void test_lex_compare (const InputIterator1 &it1, const InputIterator2 &it2, const T*, const Predicate *ppred) { const char* const it1name = type_name (it1, (T*)0); const char* const it2name = type_name (it2, (T*)0); const char* const fname = "lexicographical_compare"; const char* const funname = Predicate::name(); rw_info (0, 0, 0, "std::%s(%s, %2$s, %s, %3$s%{?}, %s%{;})", fname, it1name, it2name, ppred, funname); #define TEST(src1, src2, res) \ test_lex_compare (__LINE__, src1, src2, res, it1, it2, (T*)0, ppred) TEST ("", "", false); TEST ("a", "", false); TEST ("", "a", true); TEST ("a", "a", false); TEST ("aa", "aa", false); TEST ("aa", "ab", true); TEST ("ba", "ab", false); TEST ("ba", "ba", false); TEST ("ba", "bc", true); TEST ("a", "abc", true); TEST ("a", "bcd", true); TEST ("a", "baed", true); TEST ("abcde", "abcdefghij", true); TEST ("fghij", "fghijabcde", true); TEST ("fghij", "abcdefghij", false); TEST ("cabed", "abcdeabcde", false); TEST ("abcdefghij", "abcdefghij", false); TEST ("fghijfghij", "abcdefghij", false); TEST ("fghijabcde", "abcdeabcde", false); TEST ("abcdefghij", "bacdfeghji", true); TEST ("bacdefghij", "bacdfeghji", true); TEST ("bacdfeghij", "bacdfeghji", true); TEST ("bacdfeghja", "bacdfeghji", true); } /**************************************************************************/ /* extern */ int rw_opt_no_predicate; // --no-predicate /* extern */ int rw_opt_no_input_iter; // --no-InputIterator /* extern */ int rw_opt_no_fwd_iter; // --no-ForwardIterator /* extern */ int rw_opt_no_bidir_iter; // --no-BidirectionalIterator /* extern */ int rw_opt_no_rnd_iter; // --no-RandomAccessIterator /**************************************************************************/ template <class T, class InputIterator1, class Predicate> void test_lex_compare (const InputIterator1 &it1, const T*, const Predicate *ppred) { static const InputIter<T> input_iter (0, 0, 0); static const FwdIter<T> fwd_iter (0, 0, 0); static const BidirIter<T> bidir_iter (0, 0, 0); static const RandomAccessIter<T> rand_iter (0, 0, 0); if (rw_opt_no_input_iter) { rw_note (0, __FILE__, __LINE__, "InputIterator test disabled"); } else { test_lex_compare (it1, input_iter, (T*)0, ppred); } if (rw_opt_no_fwd_iter) { rw_note (0, __FILE__, __LINE__, "ForwardIterator test disabled"); } else { test_lex_compare (it1, fwd_iter, (T*)0, ppred); } if (rw_opt_no_bidir_iter) { rw_note (0, __FILE__, __LINE__, "BidirectionalIterator test disabled"); } else { test_lex_compare (it1, bidir_iter, (T*)0, ppred); } if (rw_opt_no_rnd_iter) { rw_note (0, __FILE__, __LINE__, "RandomAccessIterator test disabled"); } else { test_lex_compare (it1, rand_iter, (T*)0, ppred); } } template <class T, class Predicate> void test_lex_compare (const T*, const Predicate *ppred) { static const InputIter<T> input_iter (0, 0, 0); static const FwdIter<T> fwd_iter (0, 0, 0); static const BidirIter<T> bidir_iter (0, 0, 0); static const RandomAccessIter<T> rand_iter (0, 0, 0); rw_info (0, 0, 0, "template <class %s, class %s%{?}, class %s%{;}> " "bool std::lexicographical_compare (%1$s, %1$s, %2$s, " "%2$s%{?}, %s%{;})", "InputIterator1", "InputIterator2", ppred, "Compare", ppred, "Compare"); if (rw_opt_no_input_iter) { rw_note (0, __FILE__, __LINE__, "InputIterator test disabled"); } else { test_lex_compare (input_iter, (T*)0, ppred); } if (rw_opt_no_fwd_iter) { rw_note (0, __FILE__, __LINE__, "ForwardIterator test disabled"); } else { test_lex_compare (fwd_iter, (T*)0, ppred); } if (rw_opt_no_bidir_iter) { rw_note (0, __FILE__, __LINE__, "BidirectionalIterator test disabled"); } else { test_lex_compare (bidir_iter, (T*)0, ppred); } if (rw_opt_no_rnd_iter) { rw_note (0, __FILE__, __LINE__, "RandomAccessIterator test disabled"); } else { test_lex_compare (rand_iter, (T*)0, ppred); } } /**************************************************************************/ static int run_test (int, char*[]) { test_lex_compare ((X*)0, (Less<X>*)0); if (rw_opt_no_predicate) { rw_note (0, __FILE__, __LINE__, "std::lexicographical_compare predicate test disabled"); } else { test_lex_compare ((X*)0, (Less<X>*)1); } return 0; } /**************************************************************************/ int main (int argc, char *argv[]) { return rw_test (argc, argv, __FILE__, "lib.lex.comparison", 0 /* no comment */, run_test, "|-no-predicate#" "|-no-InputIterator# " "|-no-ForwardIterator# " "|-no-BidirectionalIterator# " "|-no-RandomAccessIterator#", &rw_opt_no_predicate, &rw_opt_no_input_iter, &rw_opt_no_fwd_iter, &rw_opt_no_bidir_iter, &rw_opt_no_rnd_iter); }
