Updates:
Status: Fixed
Comment #9 on issue 2063 by [email protected]: Add complete elliptic
integrals
http://code.google.com/p/sympy/issues/detail?id=2063
Merged PR # 2165.
This affects only integrals with K(z) or E(z) inside the integrand, not
integrals which
would produce these functions as result (f.e. the defining integrals).
Sympy can now do among others the following integrals:
In [11]: integrate(z**b * elliptic_k(a*z**c) / z**d, z, meijerg=True)
Out[11]: pi*z*z**b*z**(-d)*gamma(b/c - d/c + 1/c)*hyper((1/2, 1/2, b/c -
d/c + 1/c), (1, b/c + 1 - d/c + 1/c),
a*z**c*exp_polar(2*I*pi))/(2*c*gamma(b/c + 1 - d/c + 1/c))
In [12]: pprint(_)
⎛ b d 1 │ ⎞
⎜1/2, 1/2, ─ - ─ + ─ │ ⎟
b -d ⎛b d 1⎞ ┌─ ⎜ c c c │ c 2⋅ⅈ⋅π⎟
π⋅z⋅z ⋅z ⋅Γ⎜─ - ─ + ─⎟⋅ ├─ ⎜ │ a⋅z ⋅ℯ ⎟
⎝c c c⎠ 3╵ 2 ⎜ b d 1 │ ⎟
⎜ 1, ─ + 1 - ─ + ─ │ ⎟
⎝ c c c │ ⎠
────────────────────────────────────────────────────────────────
⎛b d 1⎞
2⋅c⋅Γ⎜─ + 1 - ─ + ─⎟
⎝c c c⎠
In [13]: integrate(z**b * elliptic_e(a*z**c) / z**d, z, meijerg=True)
Out[13]: pi*z*z**b*z**(-d)*gamma(b/c - d/c + 1/c)*hyper((-1/2, 1/2, b/c -
d/c + 1/c), (1, b/c + 1 - d/c + 1/c),
a*z**c*exp_polar(2*I*pi))/(2*c*gamma(b/c + 1 - d/c + 1/c))
In [14]: pprint(_)
⎛ b d 1 │ ⎞
⎜-1/2, 1/2, ─ - ─ + ─ │ ⎟
b -d ⎛b d 1⎞ ┌─ ⎜ c c c │ c 2⋅ⅈ⋅π⎟
π⋅z⋅z ⋅z ⋅Γ⎜─ - ─ + ─⎟⋅ ├─ ⎜ │ a⋅z ⋅ℯ ⎟
⎝c c c⎠ 3╵ 2 ⎜ b d 1 │ ⎟
⎜ 1, ─ + 1 - ─ + ─ │ ⎟
⎝ c c c │ ⎠
─────────────────────────────────────────────────────────────────
⎛b d 1⎞
2⋅c⋅Γ⎜─ + 1 - ─ + ─⎟
⎝c c c⎠
--
You received this message because this project is configured to send all
issue notifications to this address.
You may adjust your notification preferences at:
https://code.google.com/hosting/settings
--
You received this message because you are subscribed to the Google Groups
"sympy-issues" group.
To unsubscribe from this group and stop receiving emails from it, send an email
to [email protected].
To post to this group, send email to [email protected].
Visit this group at http://groups.google.com/group/sympy-issues.
For more options, visit https://groups.google.com/groups/opt_out.