Hi,
First of all, Thanks for the good work. It is simply good, except for
the speed.
I tried to solve three equations of three unknowns and it results in
error message, Looks like a bug.
(Please let me know if there is a more formal place to do bug
reporting.)
regards,
Suresh
a,b,c,d,e,f,g,h,i,x,y,z = symbols('abcdefghixyz')
>>> eq1 = x*a + y*b + z*c == 1
>>> eq2 = x*d + y*e + z*f == 1
>>> eq3 = x*g + y*h + z*i == 1
>>> solve([eq1,eq2,eq3],[x,y,z])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/python2.5/site-packages/sympy/solvers/solvers.py",
line 112, in solve
return solve_linear_system(matrix, syms, simplified)
File "/usr/lib/python2.5/site-packages/sympy/solvers/solvers.py",
line 205, in solve_linear_system
solutions[syms[k]] = simplify(content)
File "/usr/lib/python2.5/site-packages/sympy/simplify/simplify.py",
line 1007, in simplify
return q + factor(r) / factor(d)
File "/usr/lib/python2.5/site-packages/sympy/polynomials/
wrapper.py", line 38, in factor
return Mul(*[ff.sympy_expr for ff in factor_.factor(f, var,
order)])
File "/usr/lib/python2.5/site-packages/sympy/polynomials/
factor_.py", line 194, in factor
factors = kronecker_mv(f)
File "/usr/lib/python2.5/site-packages/sympy/polynomials/
factor_.py", line 336, in kronecker_mv
g_factors = factor(g)[1:] # Don't use constant factor.
File "/usr/lib/python2.5/site-packages/sympy/polynomials/
factor_.py", line 189, in factor
factors = fast.intpoly.factor(Polynomial2IntPoly(f))
File "/usr/lib/python2.5/site-packages/sympy/polynomials/fast/
intpoly.py", line 347, in factor
sqf_part = squarefree_part(pp)
File "/usr/lib/python2.5/site-packages/sympy/polynomials/fast/
intpoly.py", line 334, in squarefree_part
g = gcd(f, f.diff())
File "/usr/lib/python2.5/site-packages/sympy/polynomials/fast/
intpoly.py", line 55, in gcd_small_primes
B = int(math.ceil(2**n*A*b*math.sqrt(n+1)))
OverflowError: long int too large to convert to float
>>>
-----------------
Maxima:
eq1 : x*a + y*b + z*c = 1;
eq2 : x*d + y*e + z*f = 1;
eq3 : x*g + y*h + z*i = 1;
(%i18) solve([eq1,eq2,eq3],[x,y,z]);
b (i - f) - e i + f h + c (e - h)
(%o18) [[x = ---------------------------------------------,
a (f h - e i) + b (d i - f g) + c (e g - d h)
a (i - f) - d i + f g + c (d - g)
y = - ---------------------------------------------,
a (f h - e i) + b (d i - f g) + c (e g - d h)
a (h - e) - d h + e g + b (d - g)
z = ---------------------------------------------]]
a (f h - e i) + b (d i - f g) + c (e g - d h)
--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups
"sympy" group.
To post to this group, send email to [email protected]
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/sympy?hl=en
-~----------~----~----~----~------~----~------~--~---