Hi everyone,
I am Abhishek Verma, and I will be applying for GSoC this year.
I have trouble while calculating the Indefinite Integration.

I have a Expr=X^(log(x^log(x))) ,while Solving this by integrate() function 
i get the result -
>>> integrate(x**log(x**log(x)),x)
⌠            
⎮     3      
⎮  log (x)   
⎮ ℯ        dx
⌡            


But for Expr=X^(log(x^log(x^log(x))))


>>> integrate(x**log(x**log(x**log(x))),x)
Traceback (most recent call last):
  File "/usr/local/lib/python3.4/dist-packages/sympy/polys/rings.py", line 
365, in from_expr
    poly = self._rebuild_expr(expr, mapping)
  File "/usr/local/lib/python3.4/dist-packages/sympy/polys/rings.py", line 
359, in _rebuild_expr
    return _rebuild(sympify(expr))
  File "/usr/local/lib/python3.4/dist-packages/sympy/polys/rings.py", line 
351, in _rebuild
    return reduce(add, list(map(_rebuild, expr.args)))
  File "/usr/local/lib/python3.4/dist-packages/sympy/polys/rings.py", line 
353, in _rebuild
    return reduce(mul, list(map(_rebuild, expr.args)))
  File "/usr/local/lib/python3.4/dist-packages/sympy/polys/rings.py", line 
351, in _rebuild
    return reduce(add, list(map(_rebuild, expr.args)))
  File "/usr/local/lib/python3.4/dist-packages/sympy/polys/rings.py", line 
353, in _rebuild
    return reduce(mul, list(map(_rebuild, expr.args)))
  File "/usr/local/lib/python3.4/dist-packages/sympy/polys/rings.py", line 
351, in _rebuild
    return reduce(add, list(map(_rebuild, expr.args)))
  File "/usr/local/lib/python3.4/dist-packages/sympy/polys/rings.py", line 
353, in _rebuild
    return reduce(mul, list(map(_rebuild, expr.args)))
  File "/usr/local/lib/python3.4/dist-packages/sympy/polys/rings.py", line 
357, in _rebuild
    return domain.convert(expr)
  File 
"/usr/local/lib/python3.4/dist-packages/sympy/polys/domains/domain.py", 
line 146, in convert
    raise CoercionFailed("can't convert %s of type %s to %s" % (element, 
type(element), self))
sympy.polys.polyerrors.CoercionFailed: can't convert _x0**_x1 of type 
<class 'sympy.core.power.Pow'> to 
QQ[_A0,_A1,_A2,_A3,_A4,_A5,_A6,_A7,_A8,_A9,_A10,_A11,_A12,_A13,_A14,_A15,_A16,_A17,_A18,_A19,_A20,_A21,_A22,_A23,_A24,_A25,_A26,_A27,_A28,_A29,_A30,_A31,_A32,_A33,_A34,_A35,_A36,_A37,_A38,_A39,_A40,_A41,_A42,_A43,_A44,_A45,_A46,_A47,_A48,_A49,_A50,_A51,_A52,_A53,_A54,_A55,_A56,_A57,_A58,_A59,_A60,_A61,_A62,_A63,_A64,_A65,_A66,_A67,_A68,_A69,_A70,_A71,_A72,_A73,_A74,_A75,_A76,_A77,_A78,_A79,_A80,_A81,_A82,_A83,_A84,_A85,_A86,_A87,_A88,_A89,_A90,_A91,_A92,_A93,_A94,_A95,_A96,_A97,_A98,_A99,_A100,_A101,_A102,_A103,_A104,_A105,_A106,_A107,_A108,_A109,_A110,_A111,_A112,_A113,_A114,_A115,_A116,_A117,_A118,_A119,_B0]

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File 
"/usr/local/lib/python3.4/dist-packages/sympy/utilities/decorator.py", line 
35, in threaded_func
    return func(expr, *args, **kwargs)
  File 
"/usr/local/lib/python3.4/dist-packages/sympy/integrals/integrals.py", line 
1232, in integrate
    risch=risch, manual=manual)
  File 
"/usr/local/lib/python3.4/dist-packages/sympy/integrals/integrals.py", line 
487, in doit
    conds=conds)
  File 
"/usr/local/lib/python3.4/dist-packages/sympy/integrals/integrals.py", line 
862, in _eval_integral
    h = heurisch_wrapper(g, x, hints=[])
  File 
"/usr/local/lib/python3.4/dist-packages/sympy/integrals/heurisch.py", line 
128, in heurisch_wrapper
    unnecessary_permutations)
  File 
"/usr/local/lib/python3.4/dist-packages/sympy/integrals/heurisch.py", line 
566, in heurisch
    solution = _integrate('Q')
  File 
"/usr/local/lib/python3.4/dist-packages/sympy/integrals/heurisch.py", line 
555, in _integrate
    numer = ring.from_expr(raw_numer)
  File "/usr/local/lib/python3.4/dist-packages/sympy/polys/rings.py", line 
367, in from_expr
    raise ValueError("expected an expression convertible to a polynomial in 
%s, got %s" % (self, expr))
ValueError: expected an expression convertible to a polynomial in 
Polynomial ring in _x0, _x1, _x2, _x3, _x4, _x5, _x6 over 
QQ[_A0,_A1,_A2,_A3,_A4,_A5,_A6,_A7,_A8,_A9,_A10,_A11,_A12,_A13,_A14,_A15,_A16,_A17,_A18,_A19,_A20,_A21,_A22,_A23,_A24,_A25,_A26,_A27,_A28,_A29,_A30,_A31,_A32,_A33,_A34,_A35,_A36,_A37,_A38,_A39,_A40,_A41,_A42,_A43,_A44,_A45,_A46,_A47,_A48,_A49,_A50,_A51,_A52,_A53,_A54,_A55,_A56,_A57,_A58,_A59,_A60,_A61,_A62,_A63,_A64,_A65,_A66,_A67,_A68,_A69,_A70,_A71,_A72,_A73,_A74,_A75,_A76,_A77,_A78,_A79,_A80,_A81,_A82,_A83,_A84,_A85,_A86,_A87,_A88,_A89,_A90,_A91,_A92,_A93,_A94,_A95,_A96,_A97,_A98,_A99,_A100,_A101,_A102,_A103,_A104,_A105,_A106,_A107,_A108,_A109,_A110,_A111,_A112,_A113,_A114,_A115,_A116,_A117,_A118,_A119,_B0]
 
with lex order, got _x0**5*_x5 - _x0**3*(2*_x0**_x2*_x2*(2*_A103*_x2*_x6 + 
_A106*_x4*_x5 + _x4**2*_A107 + _A108*_x1*_x2 + _A110*_x4 + _A116*_x0*_x1 + 
2*_A12*_x1*_x6 + 2*_A19*_x4*_x6 + _A2 + _A20*_x2*_x3 + _A21*_x1*_x3 + 
_A23*_x3*_x4 + _A26*_x0*_x3 + _A3*_x2 + _x5**2*_A32 + _A35*_x0*_x2 + 
_A39*_x1 + _x2**2*_A41 + _A50*_x3 + 3*_x6**2*_A52 + 2*_A58*_x6 + 
_A6*_x0*_x4 + _A62*_x0*_x5 + _x1**2*_A69 + _A72*_x2*_x5 + _A74*_x2*_x4 + 
2*_A77*_x0*_x6 + _x0**2*_A78 + _A8*_x5 + _x3**2*_A81 + 2*_A83*_x3*_x6 + 
_A89*_x0 + 2*_A90*_x5*_x6 + _A95*_x1*_x4 + _A96*_x1*_x5 + _A99*_x3*_x5) + 
_A101*_x0*_x1 + _A102*_x0*_x4 + _x6**2*_A103 + _A105*_x0*_x3 + 
_A108*_x1*_x6 + _A109*_x0*_x5 + _A11*_x3*_x5 + _A14*_x3 + 2*_A15*_x2*_x3 + 
_A18*_x4 + _A20*_x3*_x6 + 2*_A24*_x1*_x2 + 2*_A27*_x2*_x5 + _A3*_x6 + 
_A31*_x1*_x4 + _x5**2*_A33 + _A35*_x0*_x6 + 2*_A36*_x2 + 3*_x2**2*_A38 + 
_A40*_x3*_x4 + 2*_A41*_x2*_x6 + _A42*_x1*_x5 + _A61*_x1 + _A70*_x0 + 
_x0**2*_A71 + _A72*_x5*_x6 + _A74*_x4*_x6 + _A75*_x5 + 2*_A76*_x0*_x2 + 
2*_A80*_x2*_x4 + _x1**2*_A82 + _A86*_x4*_x5 + _A87*_x1*_x3 + _x4**2*_A9 + 
_x3**2*_A93 + _A94 + 2*_x2*(2*_A1*_x1*_x5 + _A10 + _A101*_x0*_x2 + 
_A108*_x2*_x6 + _x5**2*_A112 + _A113*_x3*_x4 + _A116*_x0*_x6 + 
2*_A117*_x0*_x1 + _x6**2*_A12 + 2*_A13*_x1 + _A21*_x3*_x6 + _x4**2*_A22 + 
_x2**2*_A24 + _A31*_x2*_x4 + _A34*_x0*_x5 + _A37*_x3 + _A39*_x6 + 
_A4*_x3*_x5 + _A42*_x2*_x5 + _A45*_x5 + _A47*_x0*_x4 + 3*_x1**2*_A5 + 
_A51*_x0*_x3 + _x0**2*_A53 + _A56*_x0 + 2*_A59*_x1*_x4 + _A60*_x4*_x5 + 
_A61*_x2 + _x3**2*_A64 + 2*_A66*_x1*_x3 + 2*_A69*_x1*_x6 + 2*_A82*_x1*_x2 + 
_A87*_x2*_x3 + _A95*_x4*_x6 + _A96*_x5*_x6 + _A98*_x4) + (_x1 + 
2*_x2**2)*(_A100*_x0*_x3 + _A102*_x0*_x2 + _A106*_x5*_x6 + 2*_A107*_x4*_x6 
+ _A110*_x6 + _A113*_x1*_x3 + _x5**2*_A115 + _A16*_x0*_x5 + 2*_A17*_x3*_x4 
+ _A18*_x2 + _x6**2*_A19 + 2*_A22*_x1*_x4 + _A23*_x3*_x6 + _A31*_x1*_x2 + 
_A40*_x2*_x3 + 2*_A46*_x0*_x4 + _A47*_x0*_x1 + _x0**2*_A48 + _x3**2*_A55 + 
_x1**2*_A59 + _A6*_x0*_x6 + _A60*_x1*_x5 + _A63 + _A65*_x0 + _A7*_x3*_x5 + 
_A74*_x2*_x6 + 2*_A79*_x4*_x5 + _x2**2*_A80 + _A84*_x3 + _A85*_x5 + 
_A86*_x2*_x5 + 2*_A88*_x4 + 2*_A9*_x2*_x4 + 3*_x4**2*_A91 + _A95*_x1*_x6 + 
_A98*_x1) + (_x0**_x1*_x1 + 2*_x0**_x1*_x2**2)*(_A100*_x0*_x4 + 
2*_A104*_x3*_x5 + _A105*_x0*_x2 + _A11*_x2*_x5 + _A113*_x1*_x4 + 
2*_A118*_x0*_x3 + _A119*_x0*_x5 + _A14*_x2 + _x2**2*_A15 + _x4**2*_A17 + 
_A20*_x2*_x6 + _A21*_x1*_x6 + _A23*_x4*_x6 + _A26*_x0*_x6 + _A29 + _A30*_x5 
+ _A37*_x1 + _A4*_x1*_x5 + _A40*_x2*_x4 + _x0**2*_A43 + _A50*_x6 + 
_A51*_x0*_x1 + _x5**2*_A54 + 2*_A55*_x3*_x4 + _A57*_x0 + 2*_A64*_x1*_x3 + 
_x1**2*_A66 + _A7*_x4*_x5 + 2*_A81*_x3*_x6 + _x6**2*_A83 + _A84*_x4 + 
_A87*_x1*_x2 + 2*_A92*_x3 + 2*_A93*_x2*_x3 + 3*_x3**2*_A97 + _A99*_x5*_x6) 
+ (_x1*_x2*_x5 + 2*_x2**3*_x5 + _x4*_x5)*(_x1**2*_A1 + _x3**2*_A104 + 
_A106*_x4*_x6 + _A109*_x0*_x2 + _A11*_x2*_x3 + _A111*_x0 + 2*_A112*_x1*_x5 
+ _x0**2*_A114 + 2*_A115*_x4*_x5 + _A119*_x0*_x3 + _A16*_x0*_x4 + 
_x2**2*_A27 + _A30*_x3 + 2*_A32*_x5*_x6 + 2*_A33*_x2*_x5 + _A34*_x0*_x1 + 
_A4*_x1*_x3 + _A42*_x1*_x2 + 3*_x5**2*_A44 + _A45*_x1 + 2*_A49*_x5 + 
2*_A54*_x3*_x5 + _A60*_x1*_x4 + _A62*_x0*_x6 + 2*_A68*_x0*_x5 + _A7*_x3*_x4 
+ _A72*_x2*_x6 + _A73 + _A75*_x2 + _x4**2*_A79 + _A8*_x6 + _A85*_x4 + 
_A86*_x2*_x4 + _x6**2*_A90 + _A96*_x1*_x6 + _A99*_x3*_x6)) - 
_x0**2*(_x0**2*(_A100*_x3*_x4 + _A101*_x1*_x2 + _A102*_x2*_x4 + 
_A105*_x2*_x3 + _A109*_x2*_x5 + _A111*_x5 + 2*_A114*_x0*_x5 + _A116*_x1*_x6 
+ _x1**2*_A117 + _x3**2*_A118 + _A119*_x3*_x5 + _A16*_x4*_x5 + 
3*_x0**2*_A25 + _A26*_x3*_x6 + 2*_A28*_x0 + _A34*_x1*_x5 + _A35*_x2*_x6 + 
2*_A43*_x0*_x3 + _x4**2*_A46 + _A47*_x1*_x4 + 2*_A48*_x0*_x4 + _A51*_x1*_x3 
+ 2*_A53*_x0*_x1 + _A56*_x1 + _A57*_x3 + _A6*_x4*_x6 + _A62*_x5*_x6 + 
_A65*_x4 + _A67 + _x5**2*_A68 + _A70*_x2 + 2*_A71*_x0*_x2 + _x2**2*_A76 + 
_x6**2*_A77 + 2*_A78*_x0*_x6 + _A89*_x6 + _B0) + _x0*(-_A0 - _x1**2*_A1*_x5 
- _A10*_x1 - _A100*_x0*_x3*_x4 - _A101*_x0*_x1*_x2 - _A102*_x0*_x2*_x4 - 
_x6**2*_A103*_x2 - _x3**2*_A104*_x5 - _A105*_x0*_x2*_x3 - _A106*_x4*_x5*_x6 
- _x4**2*_A107*_x6 - _A108*_x1*_x2*_x6 - _A109*_x0*_x2*_x5 - 
_A11*_x2*_x3*_x5 - _A110*_x4*_x6 - _A111*_x0*_x5 - _x5**2*_A112*_x1 - 
_A113*_x1*_x3*_x4 - _x0**2*_A114*_x5 - _x5**2*_A115*_x4 - _A116*_x0*_x1*_x6 
- _x1**2*_A117*_x0 - _x3**2*_A118*_x0 - _A119*_x0*_x3*_x5 - _x6**2*_A12*_x1 
- _x1**2*_A13 - _A14*_x2*_x3 - _x2**2*_A15*_x3 - _A16*_x0*_x4*_x5 - 
_x4**2*_A17*_x3 - _A18*_x2*_x4 - _x6**2*_A19*_x4 - _A2*_x6 - 
_A20*_x2*_x3*_x6 - _A21*_x1*_x3*_x6 - _x4**2*_A22*_x1 - _A23*_x3*_x4*_x6 - 
_x2**2*_A24*_x1 - _x0**3*_A25 - _A26*_x0*_x3*_x6 - _x2**2*_A27*_x5 - 
_x0**2*_A28 - _A29*_x3 - _A3*_x2*_x6 - _A30*_x3*_x5 - _A31*_x1*_x2*_x4 - 
_x5**2*_A32*_x6 - _x5**2*_A33*_x2 - _A34*_x0*_x1*_x5 - _A35*_x0*_x2*_x6 - 
_x2**2*_A36 - _A37*_x1*_x3 - _x2**3*_A38 - _A39*_x1*_x6 - _A4*_x1*_x3*_x5 - 
_A40*_x2*_x3*_x4 - _x2**2*_A41*_x6 - _A42*_x1*_x2*_x5 - _x0**2*_A43*_x3 - 
_x5**3*_A44 - _A45*_x1*_x5 - _x4**2*_A46*_x0 - _A47*_x0*_x1*_x4 - 
_x0**2*_A48*_x4 - _x5**2*_A49 - _x1**3*_A5 - _A50*_x3*_x6 - 
_A51*_x0*_x1*_x3 - _x6**3*_A52 - _x0**2*_A53*_x1 - _x5**2*_A54*_x3 - 
_x3**2*_A55*_x4 - _A56*_x0*_x1 - _A57*_x0*_x3 - _x6**2*_A58 - 
_x1**2*_A59*_x4 - _A6*_x0*_x4*_x6 - _A60*_x1*_x4*_x5 - _A61*_x1*_x2 - 
_A62*_x0*_x5*_x6 - _A63*_x4 - _x3**2*_A64*_x1 - _A65*_x0*_x4 - 
_x1**2*_A66*_x3 - _A67*_x0 - _x5**2*_A68*_x0 - _x1**2*_A69*_x6 - 
_A7*_x3*_x4*_x5 - _A70*_x0*_x2 - _x0**2*_A71*_x2 - _A72*_x2*_x5*_x6 - 
_A73*_x5 - _A74*_x2*_x4*_x6 - _A75*_x2*_x5 - _x2**2*_A76*_x0 - 
_x6**2*_A77*_x0 - _x0**2*_A78*_x6 - _x4**2*_A79*_x5 - _A8*_x5*_x6 - 
_x2**2*_A80*_x4 - _x3**2*_A81*_x6 - _x1**2*_A82*_x2 - _x6**2*_A83*_x3 - 
_A84*_x3*_x4 - _A85*_x4*_x5 - _A86*_x2*_x4*_x5 - _A87*_x1*_x2*_x3 - 
_x4**2*_A88 - _A89*_x0*_x6 - _x4**2*_A9*_x2 - _x6**2*_A90*_x5 - _x4**3*_A91 
- _x3**2*_A92 - _x3**2*_A93*_x2 - _A94*_x2 - _A95*_x1*_x4*_x6 - 
_A96*_x1*_x5*_x6 - _x3**3*_A97 - _A98*_x1*_x4 - _A99*_x3*_x5*_x6))



I get this error message but as we know from Documentation that If integrate 
is unable to compute an integral, it returns an unevaluated Integral object.

What's happening ,unable to  figure out .Can anyone tell me ????

-- 
You received this message because you are subscribed to the Google Groups 
"sympy" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To post to this group, send email to [email protected].
Visit this group at https://groups.google.com/group/sympy.
To view this discussion on the web visit 
https://groups.google.com/d/msgid/sympy/21f0b5ae-75ee-4c1a-b2b6-e62f6a196818%40googlegroups.com.
For more options, visit https://groups.google.com/d/optout.

Reply via email to