Thank you.

El viernes, 22 de julio de 2016, 19:59:30 (UTC+2), nouiz escribió:
>
> I can't help you. But I remember that Pylearn2 allowed to train SVM on top 
> of a Theano model. Maybe you can look there.
>
> Note, Pylearn2 don't have developer anymore.
>
> Fred
>
> On Fri, Jul 22, 2016 at 12:11 PM, Beatriz G. <[email protected] 
> <javascript:>> wrote:
>
>> Hi Everyone. I am trying to use SVM classifier in Lenet instead of 
>> logistic regresion. I know how SVM (from sklearn) works and how to train 
>> and test with SVM because I have done it in others pattern recognition 
>> problems.
>>
>> My problem is that I do not know how to train and test SVM in Lenet. I do 
>> not where I have to train and test.
>>
>> I have separated train and test in Lenet, in order to train and test the 
>> SVM sepparately, but I still don't know how to mix SVM and CNN.
>>
>> Anyone could guide me?
>>
>>
>> Regards.
>>
>>
>> Here is my code:
>>
>>
>>
>>
>> class LeNetConvPoolLayer(object):
>>     """Pool Layer of a convolutional network """
>>
>>     def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 
>> 2)):
>>         """
>>         Allocate a LeNetConvPoolLayer with shared variable internal 
>> parameters.
>>         :type rng: numpy.random.RandomState
>>         :param rng: a random number generator used to initialize weights
>>         :type input: theano.tensor.dtensor4
>>         :param input: symbolic image tensor, of shape image_shape
>>         :type filter_shape: tuple or list of length 4
>>         :param filter_shape: (number of filters, num input feature maps,
>>                               filter height, filter width)
>>         :type image_shape: tuple or list of length 4
>>         :param image_shape: (batch size, num input feature maps,
>>                              image height, image width)
>>         :type poolsize: tuple or list of length 2
>>         :param poolsize: the downsampling (pooling) factor (#rows, #cols)
>>         """
>>
>>         assert image_shape[1] == filter_shape[1]                            
>> #El numero de feature maps sea igual en ambas variables
>>         self.input = input
>>
>>         # there are "num input feature maps * filter height * filter width"
>>         # inputs to each hidden unit
>>         fan_in = numpy.prod(filter_shape[1:])                                
>> #el numero de neuronas en la capa anterio
>>         # each unit in the lower layer receives a gradient from:
>>         # "num output feature maps * filter height * filter width" /
>>         #   pooling size
>>
>>         fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) /          
>> #El numero de neuronas de salida: numero de filtros*alto*ancho del 
>> filtro/poolsize(tam*tam)
>>                    numpy.prod(poolsize))
>>         # initialize weights with random weights
>>
>>         # initialize weights with random weights
>>         W_bound = numpy.sqrt(6. / (fan_in + fan_out))
>>         self.W = theano.shared(
>>             numpy.asarray(
>>                 rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
>>                 # Se calcula asi el W_bound por la funcion  de activacion 
>> tangencial.
>>                 # Los pesos dependen del tamanyo del filtro(neuronas)
>>
>>                 dtype=theano.config.floatX  # Para que sea valido en gpu
>>             ),
>>             borrow=True
>>         )
>>
>>         # the bias is a 1D tensor -- one bias per output feature map
>>         b_values = numpy.zeros((filter_shape[0],), 
>> dtype=theano.config.floatX)
>>         self.b = theano.shared(value=b_values, borrow=True)
>>
>>         # convolve input feature maps with filters
>>         conv_out = conv.conv2d(
>>             input=input,
>>             filters=self.W,
>>             filter_shape=filter_shape,
>>             image_shape=image_shape
>>         )
>>
>>         # downsample each feature map individually, using maxpooling
>>         pooled_out = downsample.max_pool_2d(
>>             input=conv_out,
>>             ds=poolsize,
>>             ignore_border=True
>>         )
>>
>>         print pooled_out
>>
>>         # add the bias term. Since the bias is a vector (1D array), we first
>>         # reshape it to a tensor of shape (1, n_filters, 1, 1). Each bias 
>> will
>>         # thus be broadcasted across mini-batches and feature map
>>         # width & height
>>         self.output = theano.tensor.nnet.relu((pooled_out + 
>> self.b.dimshuffle('x', 0, 'x', 'x')) , alpha=0)
>>
>>
>>         # store parameters of this layer
>>         self.params = [self.W, self.b]
>>
>>         # keep track of model input
>>         self.input = input
>>
>>         self.conv_out=conv_out
>>         self.pooled_out=pooled_out
>>
>>         self.salidas_capa = [self.conv_out, self.pooled_out, self.output]
>>
>>
>>
>> def evaluate_lenet5(learning_rate=0.001, n_epochs=100, nkerns=[48, 96], 
>> batch_size=20):
>>     """ Demonstrates lenet on MNIST dataset
>>
>>     :type learning_rate: float
>>     :param learning_rate: learning rate used (factor for the stochastic
>>                           gradient)
>>
>>     :type n_epochs: int
>>     :param n_epochs: maximal number of epochs to run the optimizer
>>
>>     :type dataset: string
>>     :param dataset: path to the dataset used for training /testing (MNIST 
>> here)
>>
>>     :type nkerns: list of ints
>>     :param nkerns: number of kernels on each layer
>>     """
>>
>>     rng = numpy.random.RandomState(2509)
>>
>>     train_set_x, test_set_x, train_set_y, test_set_y, valid_set_x, 
>> valid_set_y =  Load_casia_Data1()
>>
>>     train_set_x = theano.shared(numpy.array(train_set_x,  dtype='float64',))
>>     test_set_x = theano.shared(numpy.array(test_set_x, dtype='float64'))
>>     train_set_y = theano.shared(numpy.array(train_set_y,  dtype='int32'))
>>     test_set_y = theano.shared(numpy.array(test_set_y, dtype='int32'))
>>     valid_set_x = theano.shared(numpy.array(valid_set_x, dtype='float64'))
>>     valid_set_y = theano.shared(numpy.array(valid_set_y, dtype='int32'))
>>
>>     print("n_batches:")
>>
>>     # compute number of minibatches for training, validation and testing
>>     n_train_batches = train_set_x.get_value(borrow=True).shape[0]
>>     n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
>>     n_test_batches = test_set_x.get_value(borrow=True).shape[0]
>>     print("n_train_batches: %d" % n_train_batches)
>>     print("n_valid_batches: %d" % n_valid_batches)
>>     print("n_test_batches: %d" % n_test_batches)
>>
>>     n_train_batches /= batch_size
>>     n_valid_batches /= batch_size
>>     n_test_batches /= batch_size
>>
>>     # allocate symbolic variables for the data
>>     index = T.lscalar()  # index to a [mini]batch
>>
>>     # start-snippet-1
>>     x = T.matrix('x')   # the data is presented as rasterized images
>>     y = T.ivector('y')  # the labels are presented as 1D vector of
>>                         # [int] labels
>>
>>     ######################
>>     # BUILD ACTUAL MODEL #
>>     ######################
>>     print '... building the model'
>>
>>     # Reshape matrix of rasterized images of shape (batch_size, 28 * 28)
>>     # to a 4D tensor, compatible with our LeNetConvPoolLayer
>>     # (28, 28) is the size of MNIST images.
>>     layer0_input = x.reshape((batch_size, 3, 104, 52))
>>
>>     # Construct the first convolutional pooling layer:
>>     # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24)
>>     # maxpooling reduces this further to (24/2, 24/2) = (12, 12)
>>     # 4D output tensor is thus of shape(batch_size, nkerns[0], 12, 12)
>>     layer0 = LeNetConvPoolLayer(
>>         rng,
>>         input=layer0_input,
>>         image_shape=(batch_size, 3, 104, 52),
>>         filter_shape=(nkerns[0], 3, 5, 5),
>>         poolsize=(2, 2)
>>     )
>>
>>     salidas_capa0 = theano.function(
>>     [index],
>>     layer0.salidas_capa,
>>     givens={
>>     x: test_set_x[index * batch_size: (index + 1) * batch_size],
>>     }
>>     )
>>
>>
>>     # Construct the second convolutional pooling layer
>>     # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8)
>>     # maxpooling reduces this further to (8/2, 8/2) = (4, 4)
>>     # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4)
>>     layer1 = LeNetConvPoolLayer(
>>         rng,
>>         input=layer0.output,
>>         image_shape=(batch_size, nkerns[0], 50, 24),
>>         filter_shape=(nkerns[1], nkerns[0], 5, 5),
>>         poolsize=(2, 2)
>>     )
>>
>>     salidas_capa1 = theano.function(
>>     [index],
>>     layer1.salidas_capa,
>>     givens={
>>     x: test_set_x[index * batch_size: (index + 1) * batch_size],
>>     }
>>     )
>>
>>     # the HiddenLayer being fully-connected, it operates on 2D matrices of
>>     # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
>>     # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4),
>>     # or (500, 50 * 4 * 4) = (500, 800) with the default values.
>>     layer2_input = layer1.output.flatten(2)
>>
>>     # construct a fully-connected sigmoidal layer
>>     layer2 = HiddenLayer(
>>         rng,
>>         input=layer2_input,
>>         n_in=nkerns[1] * 23 * 10,
>>         n_out=100,
>>         activation=T.nnet.relu
>>     )
>>
>>
>>
>>     # classify the values of the fully-connected sigmoidal layer
>>     svm = SVC()
>>
>>
>>     layer3 = LogisticRegression(input=layer2.output, n_in=100, n_out=2)
>>
>>     # the cost we minimize during training is the NLL of the model
>>     cost = layer3.negative_log_likelihood(y)
>>
>>     # create a function to compute the mistakes that are made by the model
>>     test_model = theano.function(
>>         [index],
>>         layer3.errors(y),
>>         givens={
>>             x: test_set_x[index * batch_size: (index + 1) * batch_size],     
>>  #Los given son algo para la gpu
>>             y: test_set_y[index * batch_size: (index + 1) * batch_size]
>>         }
>>     )
>>
>>     validate_model = theano.function(
>>         [index],
>>         layer3.errors(y),
>>         givens={
>>             x: valid_set_x[index * batch_size: (index + 1) * batch_size],
>>             y: valid_set_y[index * batch_size: (index + 1) * batch_size]
>>         }
>>     )
>>
>>     # create a list of all model parameters to be fit by gradient descent
>>     params = layer3.params + layer2.params + layer1.params + layer0.params
>>
>>     # create a list of gradients for all model parameters
>>     grads = T.grad(cost, params)
>>
>>     # train_model is a function that updates the model parameters by
>>     # SGD Since this model has many parameters, it would be tedious to
>>     # manually create an update rule for each model parameter. We thus
>>     # create the updates list by automatically looping over all
>>     # (params[i], grads[i]) pairs.
>>     updates = [
>>         (param_i, param_i - learning_rate * grad_i)
>>         for param_i, grad_i in zip(params, grads)
>>     ]
>>
>>     train_model = theano.function(
>>         [index],
>>         cost,
>>         updates=updates,
>>         givens={
>>             x: train_set_x[index * batch_size: (index + 1) * batch_size],
>>             y: train_set_y[index * batch_size: (index + 1) * batch_size]
>>         }
>>     )
>>     # end-snippet-1
>>
>>
>>     ###############
>>     # TRAIN MODEL #
>>     ###############
>>     print '... training'
>>     # early-stopping parameters
>>     patience = 10000  # look as this many examples regardless
>>     patience_increase = 2  # wait this much longer when a new best is found
>>     improvement_threshold = 0.995  # a relative improvement of this much is
>>     # considered significant
>>     validation_frequency = min(n_train_batches, patience / 2)
>>     # go through this many minibatche before checking the network
>>     # on the validation set; in this case we check every epoch
>>
>>     best_validation_loss = numpy.inf
>>     best_iter = 0
>>     test_score = 0.
>>     start_time = timeit.default_timer()
>>
>>     lista_coste = []
>>
>>     epoch = 0
>>     done_looping = False
>>
>>     # save_file = 
>> open('/home/beaa/PycharmProjects/TFM/LearningTheano/salidas0.pkl', 'wb')
>>     # save_file1 = 
>> open('/home/beaa/PycharmProjects/TFM/LearningTheano/wb0.pkl', 'wb')
>>     # save_file2 = 
>> open('/home/beaa/PycharmProjects/TFM/LearningTheano/salidas1.pkl', 'wb')
>>     # save_file3 = 
>> open('/home/beaa/PycharmProjects/TFM/LearningTheano/wb1.pkl', 'wb')
>>
>>     print 'n_train_batches'
>>     print n_train_batches
>>     while (epoch < n_epochs) and (not done_looping):
>>         epoch = epoch + 1
>>         for minibatch_index in range(n_train_batches):
>>
>>             iter = (epoch - 1) * n_train_batches + minibatch_index
>>
>>             if iter % 100 == 0:
>>                 print('training @ iter = ', iter)
>>             cost_ij = train_model(minibatch_index)
>>
>>             if (iter + 1) % validation_frequency == 0:
>>
>>                 # compute zero-one loss on validation set
>>                 validation_losses = [validate_model(i) for i
>>                                      in range(n_valid_batches)]
>>                 this_validation_loss = numpy.mean(validation_losses)
>>                 print('epoch %i, minibatch %i/%i, validation error %f %%' %
>>                       (epoch, minibatch_index + 1, n_train_batches,
>>                        this_validation_loss * 100.))
>>
>>                 # if we got the best validation score until now
>>                 if this_validation_loss < best_validation_loss:
>>
>>                     # improve patience if loss improvement is good enough
>>                     if this_validation_loss < best_validation_loss * \
>>                             improvement_threshold:
>>                         patience = max(patience, iter * patience_increase)
>>
>>                     # save best validation score and iteration number
>>                     best_validation_loss = this_validation_loss
>>                     best_iter = iter
>>
>>                     w0_test = layer0.W.get_value()
>>                     b0_test = layer0.b.get_value()
>>
>>                     w1_test = layer1.W.get_value()
>>                     b1_test = layer1.b.get_value()
>>
>>                     w2_test = layer2.W.get_value()
>>                     b2_test = layer2.b.get_value()
>>
>>
>>
>>
>>             if patience <= iter:
>>                 done_looping = True
>>                 break
>>
>>
>>     ###############################
>>     ###    TESTING MODEL        ###
>>     ###############################
>>     #Aqui se tiene que cargar la red
>>
>>     layer0.W.set_value(w0_test)
>>     layer0.b.set_value(b0_test)
>>
>>     layer1.W.set_value(w1_test)
>>     layer1.b.set_value(b1_test)
>>
>>     layer2.W.set_value(w2_test)
>>     layer2.b.set_value(b2_test)
>>
>>     # test it on the test set
>>     test_losses = [test_model(i)
>>         for i in range(n_test_batches)
>>         ]
>>     test_score = numpy.mean(test_losses)
>>
>>     print((' test error of best model %f %%') % (test_score * 100.))
>>
>>
>>     end_time = timeit.default_timer()
>>     print('Optimization complete.')
>>     print('Best validation score of %f %% obtained at iteration %i, '
>>           'with test performance %f %%' %
>>           (best_validation_loss * 100., best_iter + 1, test_score * 100.))
>>
>>     print("start time: %d" % start_time)
>>     print("end_time: %d" % end_time)
>>
>>     # print(('The code for file ' +
>>     #        os.path.split(__file__)[1] +
>>     #        ' ran for %.2fm' % ((end_time - start_time) / 60.)), 
>> file=sys.stderr)
>>
>>
>>
>>
>> if __name__ == '__main__':
>>     evaluate_lenet5()
>>
>>
>> def experiment(state, channel):
>>     evaluate_lenet5(state.learning_rate, dataset=state.dataset)
>>
>> -- 
>>
>> --- 
>> You received this message because you are subscribed to the Google Groups 
>> "theano-users" group.
>> To unsubscribe from this group and stop receiving emails from it, send an 
>> email to [email protected] <javascript:>.
>> For more options, visit https://groups.google.com/d/optout.
>>
>
>

-- 

--- 
You received this message because you are subscribed to the Google Groups 
"theano-users" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
For more options, visit https://groups.google.com/d/optout.

Reply via email to