If I run :

# test it on the test set
for i in range(n_test_batches):
    test_losses = [test_model(i)]
    # y_pred_test = salidas_capa3[test_model(i)]
    # print y_pred_test
    test_score = numpy.mean(test_losses)  #Here is the break point


I got:


test_losses = {list} <type 'list'>: [array(0.5)]
 __len__ = {int} 1
 0 = {ndarray} 0.5




El jueves, 28 de julio de 2016, 2:34:12 (UTC+2), Jesse Livezey escribió:
>
> What is the value of test_model(i) at that point? I think it should be an 
> array of indices.
>
> On Wednesday, July 27, 2016 at 1:52:27 AM UTC-7, Beatriz G. wrote:
>>
>> Hi Jesse, thank you for your reply.
>>
>> I have tried to use it when I test:
>>
>> #Aqui se tiene que cargar la red
>>
>> layer0.W.set_value(w0_test)
>> layer0.b.set_value(b0_test)
>>
>> layer1.W.set_value(w1_test)
>> layer1.b.set_value(b1_test)
>>
>> layer2.W.set_value(w2_test)
>> layer2.b.set_value(b2_test)
>>
>> # test it on the test set
>> for i in range(n_test_batches):
>>     test_losses = [test_model(i)]
>>     y_pred_test = salidas_capa3[test_model(i)]
>>     print y_pred_test
>>     test_score = numpy.mean(test_losses)
>>
>> print((' test error of best model %f %%') % (test_score * 100.))
>>
>>
>>
>> but I get the following error:
>>
>>
>> Traceback (most recent call last):
>>   File "/home/beaa/Escritorio/Theano/Separando_Lenet.py", line 414, in 
>> <module>
>>     evaluate_lenet5()
>>   File "/home/beaa/Escritorio/Theano/Separando_Lenet.py", line 390, in 
>> evaluate_lenet5
>>     y_pred_test = salidas_capa3[test_model(i)]
>>   File 
>> "/home/beaa/.local/lib/python2.7/site-packages/theano/compile/function_module.py",
>>  line 545, in __getitem__
>>     return self.value[item]
>>   File 
>> "/home/beaa/.local/lib/python2.7/site-packages/theano/compile/function_module.py",
>>  line 480, in __getitem__
>>     s = finder[item]
>> TypeError: unhashable type: 'numpy.ndarray'
>>
>>
>>
>> and I do not know what produces it.
>>
>>
>> Regards
>>
>>
>> El miércoles, 27 de julio de 2016, 2:29:24 (UTC+2), Jesse Livezey 
>> escribió:
>>>
>>> You should be able to use this function to output y_pred
>>>
>>>     salidas_capa3 = theano.function(
>>>         [index],
>>>         layer3.y_pred,
>>>         givens={
>>>             x: test_set_x[index * batch_size: (index + 1) * batch_size],
>>>         }
>>>     )
>>>
>>>
>>> On Monday, July 25, 2016 at 3:09:09 AM UTC-7, Beatriz G. wrote:
>>>>
>>>> Hi, anyone knows how to get the test labels that the classifier has 
>>>> given to the data? 
>>>>
>>>> I would like to extrat the data that has not been well classified.
>>>>
>>>> Regards.
>>>>
>>>

-- 

--- 
You received this message because you are subscribed to the Google Groups 
"theano-users" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
For more options, visit https://groups.google.com/d/optout.

Reply via email to