>
> c_without_inf = theano.tensor.set_subtensor(c[inf_idx], -999)

may I ask why should we set "inf" to -999 ?? 


在 2016年7月30日星期六 UTC+9上午11:57:32,Varglur写道:
>
>
> thanks a lot, Fred. 
>
> I define a theano function as below :
> x = T.fmatrix() 
> y =  T.fmatrix()
> z = x / y 
> f = theano.function([x,y],z) 
>
>
> and give 
> a = array([[ 0.,  1.,  2.], 
>
>                 [ 3., -4.,  5.]], dtype=float32) 
>
>
>
> *b = array([[ 0.,  1.,  0.],                  [ 1.,  0.,  1.]], 
> dtype=float32)*
> f (a,b) = array([[ nan,   1.,  inf], 
>
>               [ -0., -inf,   5.]], dtype=float32)
>
>
> as can we see from denominator b ,   there are 0  in b. 
>
> could we modify "z= x/y " to process all the cases??  
>
>
>
>
> 在 2016年7月30日星期六 UTC+9上午2:40:37,nouiz写道:
>>
>> Just to be sure, oou want to replace inf/nan with a numerical value in 
>> Theano? This can be done like this:
>>
>> import numpy as np
>>
>> a = np.array([0,0,1,1,2], dtype='float')
>> b = np.array([0,1,0,1,3], dtype='float')
>> with np.errstate(divide='ignore', invalid='ignore'):
>>     c = np.true_divide(a,b)
>>
>> import theano.tensor as T
>> import theano
>> c=theano.tensor.as_tensor_variable(c)
>> inf_mask = T.isinf(c)
>> nan_mask = T.isnan(c)
>> inf_idx = inf_mask.nonzero()
>> nan_idx = nan_mask.nonzero()
>>
>> c_without_inf = theano.tensor.set_subtensor(c[inf_idx], -999)
>> c_without_inf_nan = theano.tensor.set_subtensor(c_without_inf[nan_idx], 0)
>> c_without_inf_nan.eval()
>> array([  0.00000000e+00,   0.00000000e+00,  -9.99000000e+02,
>>          1.00000000e+00,   6.66666667e-01])
>>
>> I don't know if it make a difference between inf and -inf.
>>
>> Fred
>>
>>
>>
>> On Thu, Jul 28, 2016 at 11:52 PM Varglur <[email protected]> wrote:
>>
>>> dear all,
>>>
>>> similar to problem in numpy here 
>>> <http://stackoverflow.com/questions/26248654/numpy-return-0-with-divide-by-zero>
>>>
>>> if element wise divide in theano ,  are there corresponding function in 
>>> theano as this answer in numpy  ?  
>>>
>>> numpy answer:
>>>
>>> import numpy as np
>>>
>>> a = np.array([0,0,1,1,2], dtype='float')
>>> b = np.array([0,1,0,1,3], dtype='float')
>>> with np.errstate(divide='ignore', invalid='ignore'):
>>>     c = np.true_divide(a,b)
>>>     c[c == np.inf] = 0
>>>     c = np.nan_to_num(c)
>>> print('c: {0}'.format(c))
>>>
>>> Output:
>>>
>>> c: [ 0.          0.          0.          1.          0.66666667]
>>>
>>>
>>>
>>> how to process inf and nan problem when 0/0 or 1/0 problem in theano??
>>>
>>> thanks
>>>
>>>
>>>
>>> -- 
>>>
>>> --- 
>>> You received this message because you are subscribed to the Google 
>>> Groups "theano-users" group.
>>> To unsubscribe from this group and stop receiving emails from it, send 
>>> an email to [email protected].
>>> For more options, visit https://groups.google.com/d/optout.
>>>
>>

-- 

--- 
You received this message because you are subscribed to the Google Groups 
"theano-users" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
For more options, visit https://groups.google.com/d/optout.

Reply via email to