HI guys, how do you get the predictions? I woud like to calculate those 
parameters but I can not If I do not get the predictions.

regards.



El sábado, 30 de julio de 2016, 7:37:39 (UTC+2), Ivy Junior escribió:
>
> In theano, "for" can be subsititued by "scan", and it worked!
>
>         true_pos, _ = theano.scan(fn = lambda nx, y, y_pred, mask: 
> (tensor.eq(y, nx)*tensor.eq(y_pred, nx)*mask).sum(),
>                             outputs_info = None,
>                             non_sequences = [y, y_pred, mask],
>                             sequences = tensor.arange(n_labels))
>         false_pos, _ = theano.scan(fn = lambda nx, y, y_pred, mask:\
>                                                                 
> (tensor.neq(y, nx)*tensor.eq(y_pred, nx)*mask).sum(),\
>                               outputs_info = None,
>                               non_sequences = [y, y_pred, mask],
>                               sequences = tensor.arange(n_labels))
>         false_neg, _ = theano.scan(fn = lambda nx, y, y_pred, mask: 
> (tensor.eq(y, nx)*tensor.neq(y_pred, nx)*mask).sum(),
>                               outputs_info = None,
>                               non_sequences = [y, y_pred, mask],
>                               sequences = tensor.arange(n_labels))
>
> My task is sequence labeling, like multi_class classification, so, 
>         r = ((true_pos+0.01) /( true_pos + false_pos+0.02)).mean()
>         p = ((true_pos+0.01) /(true_pos + false_neg+0.02)).mean()
>         f1 = 2*r*p/(r+p)
>
> 在 2015年5月12日星期二 UTC+8下午1:35:09,Mehdi写道:
>>
>> Hi,
>>
>> I adapted the code in this 
>> <https://github.com/Newmu/Theano-Tutorials/blob/master/3_net.py>page and 
>> I need to calculate the precision, accuracy, and recall of my model. I 
>> assume np.mean(np.argmax(teY, axis=1) == predict(teX)) calculates the 
>> accuracy of the model. Not sure how to calculate the recall and percision. 
>> Any help is appreciated. 
>>
>

-- 

--- 
You received this message because you are subscribed to the Google Groups 
"theano-users" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
For more options, visit https://groups.google.com/d/optout.

Reply via email to