Thanks for the code to reproduce this. I did an issue about this so we
don't loose track about it. We should work on it shortly. Here is the issue:

https://github.com/Theano/Theano/issues/5249

There is a work around in it until it get fixed.

thanks

Frédéric

On Sat, Jul 2, 2016 at 6:55 PM, Daniel Johnson <[email protected]> wrote:

>
>
> On Saturday, July 2, 2016 at 3:54:02 PM UTC-7, Daniel Johnson wrote:
>>
>> Hello,
>>
>> Recently I have run into a problem where compiling one of my Theano
>> functions with optimizer=fast_run gives an error (reproduced below). When
>> compiling it with optimizer=fast_compile, this error disappears.
>>
>> After some trial and error I determined that the optimization responsible
>> is "scanOp_pushout_output", as compiling with 
>> THEANO_FLAGS="optimizer_excluding=scanOp_pushout_output"
>> runs without any errors as well. I am currently using this as a workaround.
>>
>> The Theano version I am using is 
>> 0.9.0dev1.dev-a668c6c5b6d055b233aa5bc50b22800d996ffce1,
>> but this error was also occurring when run with Theano 0.8.2. I will attach
>> a function_dump of the function responsible (along with pickled versions of
>> some test input) in hope that this might be useful in fixing this.
>>
>> The error:
>>
>> Traceback (most recent call last):
>>   File 
>> "/home/djohnson/anaconda3/lib/python3.5/site-packages/theano/compile/function_module.py",
>> line 862, in __call__
>>     self.fn() if output_subset is None else\
>>   File 
>> "/home/djohnson/anaconda3/lib/python3.5/site-packages/theano/scan_module/scan_op.py",
>> line 951, in rval
>>     r = p(n, [x[0] for x in i], o)
>>   File 
>> "/home/djohnson/anaconda3/lib/python3.5/site-packages/theano/scan_module/scan_op.py",
>> line 940, in <lambda>
>>     self, node)
>>   File "theano/scan_module/scan_perform.pyx", line 547, in
>> theano.scan_module.scan_perform.perform (/home/djohnson/external/.thea
>> no/compiledir_Linux-3.13--generic-x86_64-with-debian-jessie-
>> sid-x86_64-3.5.1-64/scan_perform/mod.cpp:6224)
>> ValueError: could not broadcast input array from shape (100,390) into
>> shape (100,480)
>>
>> During handling of the above exception, another exception occurred:
>>
>> Traceback (most recent call last):
>>   File "main.py", line 70, in <module>
>>     main(**args)
>>   File "main.py", line 52, in main
>>     babi_train.train(m, bucketed, len(eff_anslist), output_format,
>> num_updates, outputdir, start_idx, batch_size)
>>   File 
>> "/home/djohnson/research_personal/gated-graph-memory-network/babi_train.py",
>> line 54, in train
>>     loss = m.train_fn(*sampled_batch)
>>   File 
>> "/home/djohnson/research_personal/gated-graph-memory-network/model.py",
>> line 200, in logfn
>>     return tfn(a,b,c)
>>   File 
>> "/home/djohnson/anaconda3/lib/python3.5/site-packages/theano/compile/function_module.py",
>> line 875, in __call__
>>     storage_map=getattr(self.fn, 'storage_map', None))
>>   File 
>> "/home/djohnson/anaconda3/lib/python3.5/site-packages/theano/gof/link.py",
>> line 325, in raise_with_op
>>     reraise(exc_type, exc_value, exc_trace)
>>   File "/home/djohnson/anaconda3/lib/python3.5/site-packages/six.py",
>> line 685, in reraise
>>     raise value.with_traceback(tb)
>>   File 
>> "/home/djohnson/anaconda3/lib/python3.5/site-packages/theano/compile/function_module.py",
>> line 862, in __call__
>>     self.fn() if output_subset is None else\
>>   File 
>> "/home/djohnson/anaconda3/lib/python3.5/site-packages/theano/scan_module/scan_op.py",
>> line 951, in rval
>>     r = p(n, [x[0] for x in i], o)
>>   File 
>> "/home/djohnson/anaconda3/lib/python3.5/site-packages/theano/scan_module/scan_op.py",
>> line 940, in <lambda>
>>     self, node)
>>   File "theano/scan_module/scan_perform.pyx", line 547, in
>> theano.scan_module.scan_perform.perform (/home/djohnson/external/.thea
>> no/compiledir_Linux-3.13--generic-x86_64-with-debian-jessie-
>> sid-x86_64-3.5.1-64/scan_perform/mod.cpp:6224)
>> ValueError: could not broadcast input array from shape (100,390) into
>> shape (100,480)
>> Apply node that caused the error: 
>> forall_inplace,cpu,grad_of_scan_fn}(Shape_i{1}.0,
>> Elemwise{sub,no_inplace}.0, Alloc.0, Alloc.0, Alloc.0, Alloc.0,
>> InplaceDimShuffle{0,1,x,x,2}.0, Alloc.0, Subtensor{int64:int64:int64}.0,
>> Subtensor{int64:int64:int64}.0, Subtensor{int64:int64:int64}.0,
>> Subtensor{int64:int64:int64}.0, Subtensor{int64:int64:int64}.0,
>> Subtensor{int64:int64:int64}.0, Subtensor{int64:int64:int64}.0,
>> Subtensor{::int64}.0, Subtensor{::int64}.0, Subtensor{::int64}.0,
>> Subtensor{::int64}.0, Alloc.0, Alloc.0, Alloc.0, Alloc.0, Alloc.0, Alloc.0,
>> Alloc.0, Alloc.0, Alloc.0, Alloc.0, Alloc.0, Alloc.0, Shape_i{1}.0,
>> Shape_i{1}.0, Shape_i{1}.0, Shape_i{1}.0, Shape_i{1}.0, Shape_i{1}.0,
>> Shape_i{1}.0, Shape_i{1}.0, Shape_i{1}.0, newnodes_proposer_update_W,
>> newnodes_proposer_update_b, newnodes_proposer_reset_W,
>> newnodes_proposer_reset_b, newnodes_proposer_activation_W,
>> newnodes_proposer_activation_b, newnodes_vote_W,
>> edgestateupdate_update_W, edgestateupdate_reset_W,
>> edgestateupdate_strength_W, edgestateupdate_activation_W,
>> Elemwise{add,no_inplace}.0, InplaceDimShuffle{x,0}.0,
>> InplaceDimShuffle{1,0}.0, InplaceDimShuffle{x,0}.0,
>> InplaceDimShuffle{1,0}.0, InplaceDimShuffle{1,0}.0,
>> InplaceDimShuffle{x,0}.0, InplaceDimShuffle{x,0}.0,
>> InplaceDimShuffle{1,0}.0, InplaceDimShuffle{1,0}.0,
>> InplaceDimShuffle{x,0}.0, Shape_i{0}.0, Shape_i{1}.0, Shape_i{0}.0,
>> Shape_i{0}.0, Shape_i{1}.0, Shape_i{0}.0, Shape_i{0}.0, Shape_i{1}.0,
>> Shape_i{0}.0)
>> Toposort index: 715
>> Inputs types: [TensorType(int64, scalar), TensorType(int64, vector),
>> TensorType(float32, 5D), TensorType(float32, 4D), TensorType(float32, 4D),
>> TensorType(float32, 3D), TensorType(float32, (False, False, True, True,
>> False)), TensorType(float32, vector), TensorType(float32, 3D),
>> TensorType(float32, 3D), TensorType(float32, 4D), TensorType(float32, 4D),
>> TensorType(float32, 5D), TensorType(int64, vector), TensorType(int64,
>> vector), TensorType(float32, 3D), TensorType(float32, 4D),
>> TensorType(float32, 4D), TensorType(float32, 5D), TensorType(float32,
>> vector), TensorType(float32, 3D), TensorType(float32, matrix),
>> TensorType(float32, 3D), TensorType(float32, matrix), TensorType(float32,
>> 3D), TensorType(float32, matrix), TensorType(float32, matrix),
>> TensorType(float32, matrix), TensorType(float32, matrix),
>> TensorType(float32, matrix), TensorType(float32, matrix), TensorType(int64,
>> scalar), TensorType(int64, scalar), TensorType(int64, scalar),
>> TensorType(int64, scalar), TensorType(int64, scalar), TensorType(int64,
>> scalar), TensorType(int64, scalar), TensorType(int64, scalar),
>> TensorType(int64, scalar), TensorType(float32, matrix), TensorType(float32,
>> vector), TensorType(float32, matrix), TensorType(float32, vector),
>> TensorType(float32, matrix), TensorType(float32, vector),
>> TensorType(float32, matrix), TensorType(float32, matrix),
>> TensorType(float32, matrix), TensorType(float32, matrix),
>> TensorType(float32, matrix), TensorType(int64, scalar), TensorType(float32,
>> row), TensorType(float32, matrix), TensorType(float32, row),
>> TensorType(float32, matrix), TensorType(float32, matrix),
>> TensorType(float32, row), TensorType(float32, row), TensorType(float32,
>> matrix), TensorType(float32, matrix), TensorType(float32, row),
>> TensorType(int64, scalar), TensorType(int64, scalar), TensorType(int64,
>> scalar), TensorType(int64, scalar), TensorType(int64, scalar),
>> TensorType(int64, scalar), TensorType(int64, scalar), TensorType(int64,
>> scalar), TensorType(int64, scalar)]
>> Inputs shapes: [(), (6,), (6, 10, 19, 19, 50), (6, 10, 19, 19), (6, 10,
>> 19, 50), (6, 10, 19), (6, 10, 1, 1, 100), (6,), (6, 10, 100), (6, 10, 19),
>> (6, 10, 19, 50), (6, 10, 19, 19), (6, 10, 19, 19, 50), (6,), (6,), (7, 10,
>> 19), (7, 10, 19, 50), (7, 10, 19, 19), (7, 10, 19, 19, 50), (7,), (2, 151,
>> 51), (2, 51), (2, 151, 51), (2, 51), (2, 151, 51), (2, 51), (2, 1), (2,
>> 51), (2, 50), (2, 1), (2, 50), (), (), (), (), (), (), (), (), (), (151,
>> 51), (51,), (151, 51), (51,), (151, 51), (51,), (100, 1), (250, 51), (250,
>> 50), (250, 1), (250, 50), (), (1, 1), (1, 100), (1, 50), (50, 250), (1,
>> 250), (1, 1), (1, 51), (51, 250), (50, 250), (1, 50), (), (), (), (), (),
>> (), (), (), ()]
>> Inputs strides: [(), (8,), (722000, 72200, 3800, 200, 4), (14440, 1444,
>> 76, 4), (38000, 3800, 200, 4), (760, 76, 4), (-400, 2400, 400, 400, 4),
>> (4,), (-400, 2400, 4), (-760, 76, 4), (-38000, 3800, 200, 4), (-14440,
>> 1444, 76, 4), (-722000, 72200, 3800, 200, 4), (-8,), (-8,), (-760, 76, 4),
>> (-38000, 3800, 200, 4), (-14440, 1444, 76, 4), (-722000, 72200, 3800, 200,
>> 4), (4,), (30804, 204, 4), (204, 4), (30804, 204, 4), (204, 4), (30804,
>> 204, 4), (204, 4), (4, 4), (204, 4), (200, 4), (4, 4), (200, 4), (), (),
>> (), (), (), (), (), (), (), (204, 4), (4,), (204, 4), (4,), (204, 4), (4,),
>> (4, 4), (204, 4), (200, 4), (4, 4), (200, 4), (), (4, 4), (400, 4), (200,
>> 4), (4, 200), (1000, 4), (4, 4), (204, 4), (4, 204), (4, 200), (200, 4),
>> (), (), (), (), (), (), (), (), ()]
>> Inputs values: [array(6), 'not shown', 'not shown', 'not shown', 'not
>> shown', 'not shown', 'not shown', 'not shown', 'not shown', 'not shown',
>> 'not shown', 'not shown', 'not shown', 'not shown', 'not shown', 'not
>> shown', 'not shown', 'not shown', 'not shown', 'not shown', 'not shown',
>> 'not shown', 'not shown', 'not shown', 'not shown', 'not shown', array([[
>> -3.65952699e-04],
>>        [ -4.58023787e-05]], dtype=float32), 'not shown', 'not shown',
>> array([[-0.0034694],
>>        [-0.0020045]], dtype=float32), 'not shown', array(6), array(6),
>> array(6), array(6), array(6), array(6), array(6), array(6), array(6), 'not
>> shown', 'not shown', 'not shown', 'not shown', 'not shown', 'not shown',
>> 'not shown', 'not shown', 'not shown', 'not shown', 'not shown', array(19),
>> array([[ 0.7651118]], dtype=float32), 'not shown', 'not shown', 'not
>> shown', 'not shown', array([[ 1.12565911]], dtype=float32), 'not shown',
>> 'not shown', 'not shown', 'not shown', array(51), array(51), array(151),
>> array(51), array(51), array(151), array(51), array(51), array(151)]
>> Outputs clients: [[], [], [], [], [], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.5,
>> ScalarFromTensor.0)], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.6,
>> ScalarFromTensor.0)], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.7,
>> ScalarFromTensor.0)], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.8,
>> ScalarFromTensor.0)], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.9,
>> ScalarFromTensor.0)], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.10,
>> ScalarFromTensor.0)], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.11,
>> ScalarFromTensor.0)], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.12,
>> ScalarFromTensor.0)], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.13,
>> ScalarFromTensor.0)], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.14,
>> ScalarFromTensor.0)], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.15,
>> ScalarFromTensor.0)], 
>> [Subtensor{::int64}(forall_inplace,cpu,grad_of_scan_fn}.16,
>> Constant{-1})], [InplaceDimShuffle{1,0,2}(fora
>> ll_inplace,cpu,grad_of_scan_fn}.17)], 
>> [Reshape{2}(forall_inplace,cpu,grad_of_scan_fn}.18,
>> MakeVector{dtype='int64'}.0), 
>> Shape_i{2}(forall_inplace,cpu,grad_of_scan_fn}.18),
>> Shape_i{1}(forall_inplace,cpu,grad_of_scan_fn}.18)],
>> [Shape_i{2}(forall_inplace,cpu,grad_of_scan_fn}.19),
>> InplaceDimShuffle{1,0,2}(forall_inplace,cpu,grad_of_scan_fn}.19)],
>> [Reshape{2}(forall_inplace,cpu,grad_of_scan_fn}.20,
>> MakeVector{dtype='int64'}.0), 
>> Shape_i{2}(forall_inplace,cpu,grad_of_scan_fn}.20),
>> Shape_i{1}(forall_inplace,cpu,grad_of_scan_fn}.20)],
>> [Reshape{2}(forall_inplace,cpu,grad_of_scan_fn}.21,
>> MakeVector{dtype='int64'}.0), 
>> Shape_i{2}(forall_inplace,cpu,grad_of_scan_fn}.21),
>> Shape_i{1}(forall_inplace,cpu,grad_of_scan_fn}.21)],
>> [InplaceDimShuffle{1,0,2}(forall_inplace,cpu,grad_of_scan_fn}.22)],
>> [Reshape{2}(forall_inplace,cpu,grad_of_scan_fn}.23,
>> MakeVector{dtype='int64'}.0), 
>> Shape_i{1}(forall_inplace,cpu,grad_of_scan_fn}.23)],
>> [Reshape{2}(forall_inplace,cpu,grad_of_scan_fn}.24,
>> MakeVector{dtype='int64'}.0), 
>> Shape_i{2}(forall_inplace,cpu,grad_of_scan_fn}.24),
>> Shape_i{1}(forall_inplace,cpu,grad_of_scan_fn}.24)]]
>>
>> HINT: Re-running with most Theano optimization disabled could give you a
>> back-trace of when this node was created. This can be done with by setting
>> the Theano flag 'optimizer=fast_compile'. If that does not work, Theano
>> optimizations can be disabled with 'optimizer=None'.
>> HINT: Use the Theano flag 'exception_verbosity=high' for a debugprint and
>> storage map footprint of this apply node.
>> [djohnson@ubuntu gated-graph-memory-network]$ THEANO_FLAGS="device=cpu"
>> python3 main.py ../babi_en/qa1_single-supporting-fact_train.txt category
>> --outputdir output_qa1 --num_updates 2
>> Starting to train...
>> Traceback (most recent call last):
>>   File 
>> "/home/djohnson/anaconda3/lib/python3.5/site-packages/theano/compile/function_module.py",
>> line 862, in __call__
>>     self.fn() if output_subset is None else\
>>   File 
>> "/home/djohnson/anaconda3/lib/python3.5/site-packages/theano/scan_module/scan_op.py",
>> line 951, in rval
>>     r = p(n, [x[0] for x in i], o)
>>   File 
>> "/home/djohnson/anaconda3/lib/python3.5/site-packages/theano/scan_module/scan_op.py",
>> line 940, in <lambda>
>>     self, node)
>>   File "theano/scan_module/scan_perform.pyx", line 547, in
>> theano.scan_module.scan_perform.perform (/home/djohnson/external/.thea
>> no/compiledir_Linux-3.13--generic-x86_64-with-debian-jessie-
>> sid-x86_64-3.5.1-64/scan_perform/mod.cpp:6224)
>> ValueError: could not broadcast input array from shape (100,390) into
>> shape (100,480)
>>
>> During handling of the above exception, another exception occurred:
>>
>> Traceback (most recent call last):
>>   File "main.py", line 70, in <module>
>>     main(**args)
>>   File "main.py", line 52, in main
>>     babi_train.train(m, bucketed, len(eff_anslist), output_format,
>> num_updates, outputdir, start_idx, batch_size)
>>   File 
>> "/home/djohnson/research_personal/gated-graph-memory-network/babi_train.py",
>> line 54, in train
>>     loss = m.train_fn(*sampled_batch)
>>   File 
>> "/home/djohnson/research_personal/gated-graph-memory-network/model.py",
>> line 200, in logfn
>>     pickle.dump(b,open('input_b.p','wb'))
>>   File 
>> "/home/djohnson/anaconda3/lib/python3.5/site-packages/theano/compile/function_module.py",
>> line 875, in __call__
>>     storage_map=getattr(self.fn, 'storage_map', None))
>>   File 
>> "/home/djohnson/anaconda3/lib/python3.5/site-packages/theano/gof/link.py",
>> line 325, in raise_with_op
>>     reraise(exc_type, exc_value, exc_trace)
>>   File "/home/djohnson/anaconda3/lib/python3.5/site-packages/six.py",
>> line 685, in reraise
>>     raise value.with_traceback(tb)
>>   File 
>> "/home/djohnson/anaconda3/lib/python3.5/site-packages/theano/compile/function_module.py",
>> line 862, in __call__
>>     self.fn() if output_subset is None else\
>>   File 
>> "/home/djohnson/anaconda3/lib/python3.5/site-packages/theano/scan_module/scan_op.py",
>> line 951, in rval
>>     r = p(n, [x[0] for x in i], o)
>>   File 
>> "/home/djohnson/anaconda3/lib/python3.5/site-packages/theano/scan_module/scan_op.py",
>> line 940, in <lambda>
>>     self, node)
>>   File "theano/scan_module/scan_perform.pyx", line 547, in
>> theano.scan_module.scan_perform.perform (/home/djohnson/external/.thea
>> no/compiledir_Linux-3.13--generic-x86_64-with-debian-jessie-
>> sid-x86_64-3.5.1-64/scan_perform/mod.cpp:6224)
>> ValueError: could not broadcast input array from shape (100,390) into
>> shape (100,480)
>> Apply node that caused the error: 
>> forall_inplace,cpu,grad_of_scan_fn}(Shape_i{1}.0,
>> Elemwise{sub,no_inplace}.0, Alloc.0, Alloc.0, Alloc.0, Alloc.0,
>> InplaceDimShuffle{0,1,x,x,2}.0, Alloc.0, Subtensor{int64:int64:int64}.0,
>> Subtensor{int64:int64:int64}.0, Subtensor{int64:int64:int64}.0,
>> Subtensor{int64:int64:int64}.0, Subtensor{int64:int64:int64}.0,
>> Subtensor{int64:int64:int64}.0, Subtensor{int64:int64:int64}.0,
>> Subtensor{::int64}.0, Subtensor{::int64}.0, Subtensor{::int64}.0,
>> Subtensor{::int64}.0, Alloc.0, Alloc.0, Alloc.0, Alloc.0, Alloc.0, Alloc.0,
>> Alloc.0, Alloc.0, Alloc.0, Alloc.0, Alloc.0, Alloc.0, Shape_i{1}.0,
>> Shape_i{1}.0, Shape_i{1}.0, Shape_i{1}.0, Shape_i{1}.0, Shape_i{1}.0,
>> Shape_i{1}.0, Shape_i{1}.0, Shape_i{1}.0, newnodes_proposer_update_W,
>> newnodes_proposer_update_b, newnodes_proposer_reset_W,
>> newnodes_proposer_reset_b, newnodes_proposer_activation_W,
>> newnodes_proposer_activation_b, newnodes_vote_W,
>> edgestateupdate_update_W, edgestateupdate_reset_W,
>> edgestateupdate_strength_W, edgestateupdate_activation_W,
>> Elemwise{add,no_inplace}.0, InplaceDimShuffle{x,0}.0,
>> InplaceDimShuffle{1,0}.0, InplaceDimShuffle{x,0}.0,
>> InplaceDimShuffle{1,0}.0, InplaceDimShuffle{1,0}.0,
>> InplaceDimShuffle{x,0}.0, InplaceDimShuffle{x,0}.0,
>> InplaceDimShuffle{1,0}.0, InplaceDimShuffle{1,0}.0,
>> InplaceDimShuffle{x,0}.0, Shape_i{0}.0, Shape_i{1}.0, Shape_i{0}.0,
>> Shape_i{0}.0, Shape_i{1}.0, Shape_i{0}.0, Shape_i{0}.0, Shape_i{1}.0,
>> Shape_i{0}.0)
>> Toposort index: 715
>> Inputs types: [TensorType(int64, scalar), TensorType(int64, vector),
>> TensorType(float32, 5D), TensorType(float32, 4D), TensorType(float32, 4D),
>> TensorType(float32, 3D), TensorType(float32, (False, False, True, True,
>> False)), TensorType(float32, vector), TensorType(float32, 3D),
>> TensorType(float32, 3D), TensorType(float32, 4D), TensorType(float32, 4D),
>> TensorType(float32, 5D), TensorType(int64, vector), TensorType(int64,
>> vector), TensorType(float32, 3D), TensorType(float32, 4D),
>> TensorType(float32, 4D), TensorType(float32, 5D), TensorType(float32,
>> vector), TensorType(float32, 3D), TensorType(float32, matrix),
>> TensorType(float32, 3D), TensorType(float32, matrix), TensorType(float32,
>> 3D), TensorType(float32, matrix), TensorType(float32, matrix),
>> TensorType(float32, matrix), TensorType(float32, matrix),
>> TensorType(float32, matrix), TensorType(float32, matrix), TensorType(int64,
>> scalar), TensorType(int64, scalar), TensorType(int64, scalar),
>> TensorType(int64, scalar), TensorType(int64, scalar), TensorType(int64,
>> scalar), TensorType(int64, scalar), TensorType(int64, scalar),
>> TensorType(int64, scalar), TensorType(float32, matrix), TensorType(float32,
>> vector), TensorType(float32, matrix), TensorType(float32, vector),
>> TensorType(float32, matrix), TensorType(float32, vector),
>> TensorType(float32, matrix), TensorType(float32, matrix),
>> TensorType(float32, matrix), TensorType(float32, matrix),
>> TensorType(float32, matrix), TensorType(int64, scalar), TensorType(float32,
>> row), TensorType(float32, matrix), TensorType(float32, row),
>> TensorType(float32, matrix), TensorType(float32, matrix),
>> TensorType(float32, row), TensorType(float32, row), TensorType(float32,
>> matrix), TensorType(float32, matrix), TensorType(float32, row),
>> TensorType(int64, scalar), TensorType(int64, scalar), TensorType(int64,
>> scalar), TensorType(int64, scalar), TensorType(int64, scalar),
>> TensorType(int64, scalar), TensorType(int64, scalar), TensorType(int64,
>> scalar), TensorType(int64, scalar)]
>> Inputs shapes: [(), (6,), (6, 10, 19, 19, 50), (6, 10, 19, 19), (6, 10,
>> 19, 50), (6, 10, 19), (6, 10, 1, 1, 100), (6,), (6, 10, 100), (6, 10, 19),
>> (6, 10, 19, 50), (6, 10, 19, 19), (6, 10, 19, 19, 50), (6,), (6,), (7, 10,
>> 19), (7, 10, 19, 50), (7, 10, 19, 19), (7, 10, 19, 19, 50), (7,), (2, 151,
>> 51), (2, 51), (2, 151, 51), (2, 51), (2, 151, 51), (2, 51), (2, 1), (2,
>> 51), (2, 50), (2, 1), (2, 50), (), (), (), (), (), (), (), (), (), (151,
>> 51), (51,), (151, 51), (51,), (151, 51), (51,), (100, 1), (250, 51), (250,
>> 50), (250, 1), (250, 50), (), (1, 1), (1, 100), (1, 50), (50, 250), (50,
>> 250), (1, 50), (1, 51), (51, 250), (1, 250), (1, 1), (), (), (), (), (),
>> (), (), (), ()]
>> Inputs strides: [(), (8,), (722000, 72200, 3800, 200, 4), (14440, 1444,
>> 76, 4), (38000, 3800, 200, 4), (760, 76, 4), (-400, 2400, 400, 400, 4),
>> (4,), (-400, 2400, 4), (-760, 76, 4), (-38000, 3800, 200, 4), (-14440,
>> 1444, 76, 4), (-722000, 72200, 3800, 200, 4), (-8,), (-8,), (-760, 76, 4),
>> (-38000, 3800, 200, 4), (-14440, 1444, 76, 4), (-722000, 72200, 3800, 200,
>> 4), (4,), (30804, 204, 4), (204, 4), (30804, 204, 4), (204, 4), (30804,
>> 204, 4), (204, 4), (4, 4), (204, 4), (200, 4), (4, 4), (200, 4), (), (),
>> (), (), (), (), (), (), (), (204, 4), (4,), (204, 4), (4,), (204, 4), (4,),
>> (4, 4), (204, 4), (200, 4), (4, 4), (200, 4), (), (4, 4), (400, 4), (200,
>> 4), (4, 200), (4, 200), (200, 4), (204, 4), (4, 204), (1000, 4), (4, 4),
>> (), (), (), (), (), (), (), (), ()]
>> Inputs values: [array(6), 'not shown', 'not shown', 'not shown', 'not
>> shown', 'not shown', 'not shown', 'not shown', 'not shown', 'not shown',
>> 'not shown', 'not shown', 'not shown', 'not shown', 'not shown', 'not
>> shown', 'not shown', 'not shown', 'not shown', 'not shown', 'not shown',
>> 'not shown', 'not shown', 'not shown', 'not shown', 'not shown', array([[
>> 0.00047027],
>>        [ 0.00014215]], dtype=float32), 'not shown', 'not shown', array([[
>> 0.00089044],
>>        [ 0.00053652]], dtype=float32), 'not shown', array(6), array(6),
>> array(6), array(6), array(6), array(6), array(6), array(6), array(6), 'not
>> shown', 'not shown', 'not shown', 'not shown', 'not shown', 'not shown',
>> 'not shown', 'not shown', 'not shown', 'not shown', 'not shown', array(19),
>> array([[ 0.83649749]], dtype=float32), 'not shown', 'not shown', 'not
>> shown', 'not shown', 'not shown', 'not shown', 'not shown', 'not shown',
>> array([[ 0.87242377]], dtype=float32), array(51), array(51), array(151),
>> array(51), array(51), array(151), array(51), array(51), array(151)]
>> Outputs clients: [[], [], [], [], [], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.5,
>> ScalarFromTensor.0)], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.6,
>> ScalarFromTensor.0)], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.7,
>> ScalarFromTensor.0)], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.8,
>> ScalarFromTensor.0)], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.9,
>> ScalarFromTensor.0)], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.10,
>> ScalarFromTensor.0)], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.11,
>> ScalarFromTensor.0)], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.12,
>> ScalarFromTensor.0)], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.13,
>> ScalarFromTensor.0)], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.14,
>> ScalarFromTensor.0)], 
>> [Subtensor{int64}(forall_inplace,cpu,grad_of_scan_fn}.15,
>> ScalarFromTensor.0)], 
>> [Subtensor{::int64}(forall_inplace,cpu,grad_of_scan_fn}.16,
>> Constant{-1})], [InplaceDimShuffle{1,0,2}(fora
>> ll_inplace,cpu,grad_of_scan_fn}.17)], 
>> [Reshape{2}(forall_inplace,cpu,grad_of_scan_fn}.18,
>> MakeVector{dtype='int64'}.0), 
>> Shape_i{2}(forall_inplace,cpu,grad_of_scan_fn}.18),
>> Shape_i{1}(forall_inplace,cpu,grad_of_scan_fn}.18)],
>> [Shape_i{2}(forall_inplace,cpu,grad_of_scan_fn}.19),
>> InplaceDimShuffle{1,0,2}(forall_inplace,cpu,grad_of_scan_fn}.19)],
>> [Reshape{2}(forall_inplace,cpu,grad_of_scan_fn}.20,
>> MakeVector{dtype='int64'}.0), 
>> Shape_i{2}(forall_inplace,cpu,grad_of_scan_fn}.20),
>> Shape_i{1}(forall_inplace,cpu,grad_of_scan_fn}.20)],
>> [Reshape{2}(forall_inplace,cpu,grad_of_scan_fn}.21,
>> MakeVector{dtype='int64'}.0), 
>> Shape_i{2}(forall_inplace,cpu,grad_of_scan_fn}.21),
>> Shape_i{1}(forall_inplace,cpu,grad_of_scan_fn}.21)],
>> [InplaceDimShuffle{1,0,2}(forall_inplace,cpu,grad_of_scan_fn}.22)],
>> [Reshape{2}(forall_inplace,cpu,grad_of_scan_fn}.23,
>> MakeVector{dtype='int64'}.0), 
>> Shape_i{1}(forall_inplace,cpu,grad_of_scan_fn}.23)],
>> [Reshape{2}(forall_inplace,cpu,grad_of_scan_fn}.24,
>> MakeVector{dtype='int64'}.0), 
>> Shape_i{2}(forall_inplace,cpu,grad_of_scan_fn}.24),
>> Shape_i{1}(forall_inplace,cpu,grad_of_scan_fn}.24)]]
>>
>> HINT: Re-running with most Theano optimization disabled could give you a
>> back-trace of when this node was created. This can be done with by setting
>> the Theano flag 'optimizer=fast_compile'. If that does not work, Theano
>> optimizations can be disabled with 'optimizer=None'.
>> HINT: Use the Theano flag 'exception_verbosity=high' for a debugprint and
>> storage map footprint of this apply node.
>>
>> --
>
> ---
> You received this message because you are subscribed to the Google Groups
> "theano-users" group.
> To unsubscribe from this group and stop receiving emails from it, send an
> email to [email protected].
> For more options, visit https://groups.google.com/d/optout.
>

-- 

--- 
You received this message because you are subscribed to the Google Groups 
"theano-users" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
For more options, visit https://groups.google.com/d/optout.

Reply via email to