I test RNN_toy_example_2.py and find the code is runing very slow on GPU 
compared 
to without using it.  Could anyone shed some light on it?

I also had a test on logistic_sgd. Below is the result:
CPU wins one more time! Could someone take a look and help?

GPU - device 0: GeForce GTX 1060 6GB
epoch 73, minibatch 83/83, test error of best model 7.489583 %
Optimization complete with best validation score of 7.500000 %,with test 
performance 7.489583 %Using gpu 
The code for file logistic_sgd.py ran for 8.3s
The code run for 74 epochs, with 8.885942 epochs/sec

CPU -Intel Core i7 6700 @3.40 Ghz
epoch 73, minibatch 83/83, test error of best model 7.489583 %
Optimization complete with best validation score of 7.500000 %,with test 
performance 7.489583 %
The code run for 74 epochs, with 14.042386 epochs/sec
The code for file logistic_sgd.py ran for 5.3s

-- 

--- 
You received this message because you are subscribed to the Google Groups 
"theano-users" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
For more options, visit https://groups.google.com/d/optout.
"""
This is a simple example of Vanilla RNN applied on a toy example dataset.
The task is a "simple memorization task". The network input has a shape of
(15, 2) and the output is another sequence with a shape of (15, 2).
Thus, we have 2 input signals and 2 output signals (each with a length of 15).
Output signals are same as input signals but with 2 and 4 time-steps
delay respectively.

Output_0_at_time_step[t] = Input_0_at_time_step[t-2]
Output_1_at_time_step[t] = Input_1_at_time_step[t-4]

At the end of training I also plot these 4 signals.
"""
"""Simple example of Vanilla RNN applied on a toy example dataset.

The task is a "simple memorization task". The network input has a shape of
(15, 2) and the output is another sequence with a shape of (15, 2).
Thus, we have 2 input signals and 2 output signals (each with a length of 15).
Output signals are same as input signals but with 2 and 4 time-steps
delay respectively.
Output_0_at_time_step[t] = Input_0_at_time_step[t-2]
Output_1_at_time_step[t] = Input_1_at_time_step[t-4]

At the end of training I also plot these 4 signals.

"""
import numpy
import theano
import logging
from theano import tensor
from blocks.bricks import Linear, Tanh
from blocks.bricks.cost import SquaredError
from blocks.initialization import IsotropicGaussian, Constant
from fuel.datasets import IterableDataset
from fuel.streams import DataStream
from blocks.algorithms import (GradientDescent, Scale,
                               StepClipping, CompositeRule)
from blocks.extensions.monitoring import TrainingDataMonitoring
from blocks.main_loop import MainLoop
from blocks.extensions import FinishAfter, Printing
from blocks.bricks.recurrent import SimpleRecurrent
from blocks.graph import ComputationGraph
from matplotlib import pyplot


def main(seq_u, seq_y, n_h, n_y, n_epochs):
    # Building Model
    u = tensor.tensor3('input_sequence')
    input_to_state = Linear(name='input_to_state',
                            input_dim=seq_u.shape[-1],
                            output_dim=n_h)
    u_transform = input_to_state.apply(u)
    RNN = SimpleRecurrent(activation=Tanh(),
                          dim=n_h, name="RNN")
    h = RNN.apply(u_transform)  # h is hidden states in the RNN
    state_to_output = Linear(name='state_to_output',
                             input_dim=n_h,
                             output_dim=seq_y.shape[-1])
    y_hat = state_to_output.apply(h)
    y_hat.name = 'output_sequence'

    predict = theano.function(inputs=[u], outputs=y_hat)

    # Cost
    y = tensor.tensor3('target_sequence')
    cost = SquaredError().apply(y, y_hat)
    cost.name = 'MSE'

    # Initialization
    for brick in (RNN, state_to_output, input_to_state):
        brick.weights_init = IsotropicGaussian(0.01)
        brick.biases_init = Constant(0)
        brick.initialize()

    # Data
    dataset = IterableDataset({'input_sequence': seq_u,
                               'target_sequence': seq_y})
    stream = DataStream(dataset)

    # Training
    algorithm = GradientDescent(
        cost=cost,
        parameters=ComputationGraph(cost).parameters,
        step_rule=CompositeRule([StepClipping(10.0),
                                 Scale(0.01)]))
    monitor = TrainingDataMonitoring([cost],
                                     prefix="train",
                                     after_epoch=True)
    # y_hat_max_path = print_pred(tensor.argmax(y_hat[:, 0, :], axis=1))
    # y_hat_max_path.name = 'Viterbi'
    # monitor_output = TrainingDataMonitoring([y_hat_max_path],
    #                                         prefix="y_hat",
    #                                         every_n_epochs=1)
    main_loop = MainLoop(data_stream=stream, algorithm=algorithm,
                         extensions=[monitor,
                                     FinishAfter(after_n_epochs=n_epochs),
                                     Printing()])

    main_loop.run()

    # Visualization
    test_u = seq_u[0, :, 0:1, :]
    test_y = seq_y[0, :, 0:1, :]
    test_y_hat = predict(test_u)

    # We just plot one of the sequences
    pyplot.close('all')
    pyplot.figure()

    # Graph 1
    ax1 = pyplot.subplot(211)
    pyplot.plot(test_u[:, 0, :])
    pyplot.grid()
    ax1.set_title('Input sequence')

    # Graph 2
    ax2 = pyplot.subplot(212)
    true_targets = pyplot.plot(test_y[:, 0, :])

    guessed_targets = pyplot.plot(test_y_hat[:, 0, :], linestyle='--')
    pyplot.grid()
    for i, x in enumerate(guessed_targets):
        x.set_color(true_targets[i].get_color())
    ax2.set_title('solid: true output, dashed: model output')

    ax1.annotate('Input data point', xy=(2, test_u[2, 0, 0]),
                 xytext=(2, test_u[2, 0, 0] + 1),
                 arrowprops=dict(facecolor='black', shrink=0.05))

    ax2.annotate('Output data point (Same point but with 2 time_steps delay)',
                 xy=(4, test_y[4, 0, 0]), xytext=(4, test_y[4, 0, 0] + 1),
                 arrowprops=dict(facecolor='black', shrink=0.05))

    # Save as a file
    pyplot.savefig('RNN_seq.png')
    print("Figure is saved as a .png file.")

    pyplot.show()

if __name__ == "__main__":
    logging.basicConfig(level=logging.INFO)
    n_examples = 20
    batch_size = 10
    n_u = 2  # input vector size
    n_h = 7  # hidden vector size
    n_y = 2  # output vector size
    time_steps = 15  # number of time-steps in time
    n_seq = 10  # number of sequences for training

    numpy.random.seed(0)

    # generating random sequences
    seq_u = numpy.random.randn(n_examples, time_steps, batch_size, n_u)
    seq_y = numpy.zeros((n_examples, time_steps, batch_size, n_y))

    seq_y[:, 2:, :, 0] = seq_u[:, :-2, :, 0]  # 2 time-step delay
    seq_y[:, 4:, :, 1] = seq_u[:, :-4, :, 1]  # 4 time-step delay

    seq_y += 0.01 * numpy.random.standard_normal(seq_y.shape)

    main(seq_u, seq_y, 8, 2, 1000)
"""
This tutorial introduces logistic regression using Theano and stochastic
gradient descent.

Logistic regression is a probabilistic, linear classifier. It is parametrized
by a weight matrix :math:`W` and a bias vector :math:`b`. Classification is
done by projecting data points onto a set of hyperplanes, the distance to
which is used to determine a class membership probability.

Mathematically, this can be written as:

.. math::
  P(Y=i|x, W,b) &= softmax_i(W x + b) \\
                &= \frac {e^{W_i x + b_i}} {\sum_j e^{W_j x + b_j}}


The output of the model or prediction is then done by taking the argmax of
the vector whose i'th element is P(Y=i|x).

.. math::

  y_{pred} = argmax_i P(Y=i|x,W,b)


This tutorial presents a stochastic gradient descent optimization method
suitable for large datasets.


References:

    - textbooks: "Pattern Recognition and Machine Learning" -
                 Christopher M. Bishop, section 4.3.2

GPU - device 0: GeForce GTX 1060 6GB
epoch 73, minibatch 83/83, test error of best model 7.489583 %
Optimization complete with best validation score of 7.500000 %,with test performance 7.489583 %Using gpu 
The code for file logistic_sgd.py ran for 8.3s
The code run for 74 epochs, with 8.885942 epochs/sec

CPU -Intel Core i7 6700 @3.40 Ghz
epoch 73, minibatch 83/83, test error of best model 7.489583 %
Optimization complete with best validation score of 7.500000 %,with test performance 7.489583 %
The code run for 74 epochs, with 14.042386 epochs/sec
The code for file logistic_sgd.py ran for 5.3s

"""

from __future__ import print_function

__docformat__ = 'restructedtext en'

import six.moves.cPickle as pickle
import gzip
import os
import sys
import timeit

import numpy

import theano
import theano.tensor as T


class LogisticRegression(object):
    """Multi-class Logistic Regression Class

    The logistic regression is fully described by a weight matrix :math:`W`
    and bias vector :math:`b`. Classification is done by projecting data
    points onto a set of hyperplanes, the distance to which is used to
    determine a class membership probability.
    """

    def __init__(self, input, n_in, n_out):
        """ Initialize the parameters of the logistic regression

        :type input: theano.tensor.TensorType
        :param input: symbolic variable that describes the input of the
                      architecture (one minibatch)

        :type n_in: int
        :param n_in: number of input units, the dimension of the space in
                     which the datapoints lie

        :type n_out: int
        :param n_out: number of output units, the dimension of the space in
                      which the labels lie

        """
        # start-snippet-1
        # initialize with 0 the weights W as a matrix of shape (n_in, n_out)
        self.W = theano.shared(
            value=numpy.zeros(
                (n_in, n_out),
                dtype=theano.config.floatX
            ),
            name='W',
            borrow=True
        )
        # initialize the biases b as a vector of n_out 0s
        self.b = theano.shared(
            value=numpy.zeros(
                (n_out,),
                dtype=theano.config.floatX
            ),
            name='b',
            borrow=True
        )

        # symbolic expression for computing the matrix of class-membership
        # probabilities
        # Where:
        # W is a matrix where column-k represent the separation hyperplane for
        # class-k
        # x is a matrix where row-j  represents input training sample-j
        # b is a vector where element-k represent the free parameter of
        # hyperplane-k
        self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W) + self.b)

        # symbolic description of how to compute prediction as class whose
        # probability is maximal
        self.y_pred = T.argmax(self.p_y_given_x, axis=1)
        # end-snippet-1

        # parameters of the model
        self.params = [self.W, self.b]

        # keep track of model input
        self.input = input

    def negative_log_likelihood(self, y):
        """Return the mean of the negative log-likelihood of the prediction
        of this model under a given target distribution.

        .. math::

            \frac{1}{|\mathcal{D}|} \mathcal{L} (\theta=\{W,b\}, \mathcal{D}) =
            \frac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|}
                \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\
            \ell (\theta=\{W,b\}, \mathcal{D})

        :type y: theano.tensor.TensorType
        :param y: corresponds to a vector that gives for each example the
                  correct label

        Note: we use the mean instead of the sum so that
              the learning rate is less dependent on the batch size
        """
        # start-snippet-2
        # y.shape[0] is (symbolically) the number of rows in y, i.e.,
        # number of examples (call it n) in the minibatch
        # T.arange(y.shape[0]) is a symbolic vector which will contain
        # [0,1,2,... n-1] T.log(self.p_y_given_x) is a matrix of
        # Log-Probabilities (call it LP) with one row per example and
        # one column per class LP[T.arange(y.shape[0]),y] is a vector
        # v containing [LP[0,y[0]], LP[1,y[1]], LP[2,y[2]], ...,
        # LP[n-1,y[n-1]]] and T.mean(LP[T.arange(y.shape[0]),y]) is
        # the mean (across minibatch examples) of the elements in v,
        # i.e., the mean log-likelihood across the minibatch.
        return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y])
        # end-snippet-2

    def errors(self, y):
        """Return a float representing the number of errors in the minibatch
        over the total number of examples of the minibatch ; zero one
        loss over the size of the minibatch

        :type y: theano.tensor.TensorType
        :param y: corresponds to a vector that gives for each example the
                  correct label
        """

        # check if y has same dimension of y_pred
        if y.ndim != self.y_pred.ndim:
            raise TypeError(
                'y should have the same shape as self.y_pred',
                ('y', y.type, 'y_pred', self.y_pred.type)
            )
        # check if y is of the correct datatype
        if y.dtype.startswith('int'):
            # the T.neq operator returns a vector of 0s and 1s, where 1
            # represents a mistake in prediction
            return T.mean(T.neq(self.y_pred, y))
        else:
            raise NotImplementedError()


def load_data(dataset):
    ''' Loads the dataset

    :type dataset: string
    :param dataset: the path to the dataset (here MNIST)
    '''

    #############
    # LOAD DATA #
    #############

    # Download the MNIST dataset if it is not present
    data_dir, data_file = os.path.split(dataset)
    if data_dir == "" and not os.path.isfile(dataset):
        # Check if dataset is in the data directory.
        new_path = os.path.join(
            os.path.split(__file__)[0],
            "..",
            "data",
            dataset
        )
        if os.path.isfile(new_path) or data_file == 'mnist.pkl.gz':
            dataset = new_path

    if (not os.path.isfile(dataset)) and data_file == 'mnist.pkl.gz':
        from six.moves import urllib
        origin = (
            'http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz'
        )
        print('Downloading data from %s' % origin)
        urllib.request.urlretrieve(origin, dataset)

    print('... loading data')

    # Load the dataset
    with gzip.open(dataset, 'rb') as f:
        try:
            train_set, valid_set, test_set = pickle.load(f, encoding='latin1')
        except:
            train_set, valid_set, test_set = pickle.load(f)
    # train_set, valid_set, test_set format: tuple(input, target)
    # input is a numpy.ndarray of 2 dimensions (a matrix)
    # where each row corresponds to an example. target is a
    # numpy.ndarray of 1 dimension (vector) that has the same length as
    # the number of rows in the input. It should give the target
    # to the example with the same index in the input.

    def shared_dataset(data_xy, borrow=True):
        """ Function that loads the dataset into shared variables

        The reason we store our dataset in shared variables is to allow
        Theano to copy it into the GPU memory (when code is run on GPU).
        Since copying data into the GPU is slow, copying a minibatch everytime
        is needed (the default behaviour if the data is not in a shared
        variable) would lead to a large decrease in performance.
        """
        data_x, data_y = data_xy
        shared_x = theano.shared(numpy.asarray(data_x,
                                               dtype=theano.config.floatX),
                                 borrow=borrow)
        shared_y = theano.shared(numpy.asarray(data_y,
                                               dtype=theano.config.floatX),
                                 borrow=borrow)
        # When storing data on the GPU it has to be stored as floats
        # therefore we will store the labels as ``floatX`` as well
        # (``shared_y`` does exactly that). But during our computations
        # we need them as ints (we use labels as index, and if they are
        # floats it doesn't make sense) therefore instead of returning
        # ``shared_y`` we will have to cast it to int. This little hack
        # lets ous get around this issue
        return shared_x, T.cast(shared_y, 'int32')

    test_set_x, test_set_y = shared_dataset(test_set)
    valid_set_x, valid_set_y = shared_dataset(valid_set)
    train_set_x, train_set_y = shared_dataset(train_set)

    rval = [(train_set_x, train_set_y), (valid_set_x, valid_set_y),
            (test_set_x, test_set_y)]
    return rval


def sgd_optimization_mnist(learning_rate=0.13, n_epochs=1000,
                           dataset='mnist.pkl.gz',
                           batch_size=600):
    """
    Demonstrate stochastic gradient descent optimization of a log-linear
    model

    This is demonstrated on MNIST.

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
                          gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: the path of the MNIST dataset file from
                 http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz

    """
    datasets = load_data(dataset)

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0] // batch_size
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] // batch_size
    n_test_batches = test_set_x.get_value(borrow=True).shape[0] // batch_size

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print('... building the model')

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    # generate symbolic variables for input (x and y represent a
    # minibatch)
    x = T.matrix('x')  # data, presented as rasterized images
    y = T.ivector('y')  # labels, presented as 1D vector of [int] labels

    # construct the logistic regression class
    # Each MNIST image has size 28*28
    classifier = LogisticRegression(input=x, n_in=28 * 28, n_out=10)

    # the cost we minimize during training is the negative log likelihood of
    # the model in symbolic format
    cost = classifier.negative_log_likelihood(y)

    # compiling a Theano function that computes the mistakes that are made by
    # the model on a minibatch
    test_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: test_set_x[index * batch_size: (index + 1) * batch_size],
            y: test_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    validate_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: valid_set_x[index * batch_size: (index + 1) * batch_size],
            y: valid_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )

    # compute the gradient of cost with respect to theta = (W,b)
    g_W = T.grad(cost=cost, wrt=classifier.W)
    g_b = T.grad(cost=cost, wrt=classifier.b)

    # start-snippet-3
    # specify how to update the parameters of the model as a list of
    # (variable, update expression) pairs.
    updates = [(classifier.W, classifier.W - learning_rate * g_W),
               (classifier.b, classifier.b - learning_rate * g_b)]

    # compiling a Theano function `train_model` that returns the cost, but in
    # the same time updates the parameter of the model based on the rules
    # defined in `updates`
    train_model = theano.function(
        inputs=[index],
        outputs=cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )
    # end-snippet-3

    ###############
    # TRAIN MODEL #
    ###############
    print('... training the model')
    # early-stopping parameters
    patience = 5000  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is
                                  # found
    improvement_threshold = 0.995  # a relative improvement of this much is
                                  # considered significant
    validation_frequency = min(n_train_batches, patience // 2)
                                  # go through this many
                                  # minibatche before checking the network
                                  # on the validation set; in this case we
                                  # check every epoch

    best_validation_loss = numpy.inf
    test_score = 0.
    start_time = timeit.default_timer()

    done_looping = False
    epoch = 0
    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in range(n_train_batches):

            minibatch_avg_cost = train_model(minibatch_index)
            # iteration number
            iter = (epoch - 1) * n_train_batches + minibatch_index

            if (iter + 1) % validation_frequency == 0:
                # compute zero-one loss on validation set
                validation_losses = [validate_model(i)
                                     for i in range(n_valid_batches)]
                this_validation_loss = numpy.mean(validation_losses)

                print(
                    'epoch %i, minibatch %i/%i, validation error %f %%' %
                    (
                        epoch,
                        minibatch_index + 1,
                        n_train_batches,
                        this_validation_loss * 100.
                    )
                )

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:
                    #improve patience if loss improvement is good enough
                    if this_validation_loss < best_validation_loss *  \
                       improvement_threshold:
                        patience = max(patience, iter * patience_increase)

                    best_validation_loss = this_validation_loss
                    # test it on the test set

                    test_losses = [test_model(i)
                                   for i in range(n_test_batches)]
                    test_score = numpy.mean(test_losses)

                    print(
                        (
                            '     epoch %i, minibatch %i/%i, test error of'
                            ' best model %f %%'
                        ) %
                        (
                            epoch,
                            minibatch_index + 1,
                            n_train_batches,
                            test_score * 100.
                        )
                    )

                    # save the best model
                    with open('best_model.pkl', 'wb') as f:
                        pickle.dump(classifier, f)

            if patience <= iter:
                done_looping = True
                break

    end_time = timeit.default_timer()
    print(
        (
            'Optimization complete with best validation score of %f %%,'
            'with test performance %f %%'
        )
        % (best_validation_loss * 100., test_score * 100.)
    )
    print('The code run for %d epochs, with %f epochs/sec' % (
        epoch, 1. * epoch / (end_time - start_time)))
    print(('The code for file ' +
           os.path.split(__file__)[1] +
           ' ran for %.1fs' % ((end_time - start_time))), file=sys.stderr)


def predict():
    """
    An example of how to load a trained model and use it
    to predict labels.
    """

    # load the saved model
    classifier = pickle.load(open('best_model.pkl'))

    # compile a predictor function
    predict_model = theano.function(
        inputs=[classifier.input],
        outputs=classifier.y_pred)

    # We can test it on some examples from test test
    dataset='mnist.pkl.gz'
    datasets = load_data(dataset)
    test_set_x, test_set_y = datasets[2]
    test_set_x = test_set_x.get_value()

    predicted_values = predict_model(test_set_x[:10])
    print("Predicted values for the first 10 examples in test set:")
    print(predicted_values)


if __name__ == '__main__':
    sgd_optimization_mnist()

Reply via email to