I've set THEANO_FLAGS such that floatX=float32 and type casted to float32 
throughout the code. Is there a way to set allow_convert = True so that can 
convert from float64 to float32 for Variable Elemwise{add,no_inplace}.0). I'm 
new to group and first post so let me know if any additional info would be 
helpful.


---------------------------------------------------------------------------TypeError
                                 Traceback (most recent call 
last)/home/wilson/anaconda3/lib/python3.5/site-packages/theano/compile/pfunc.py 
in rebuild_collect_shared(outputs, inputs, replace, updates, rebuild_strict, 
copy_inputs_over, no_default_updates)    192             update_val = 
store_into.type.filter_variable(update_val,--> 193                              
                            allow_convert=False)    194         except 
TypeError:
/home/wilson/anaconda3/lib/python3.5/site-packages/theano/tensor/type.py in 
filter_variable(self, other, allow_convert)    234                  
other=other,--> 235                  self=self))    236 
TypeError: Cannot convert Type TensorType(float64, matrix) (of Variable 
Elemwise{add,no_inplace}.0) into Type TensorType(float32, matrix). You can try 
to manually convert Elemwise{add,no_inplace}.0 into a TensorType(float32, 
matrix).

During handling of the above exception, another exception occurred:
TypeError                                 Traceback (most recent call 
last)<ipython-input-137-40e9aa6eac9d> in <module>()     78      79 t = 
time()---> 80 train_g = theano.function([X, Z], cost, updates=g_updates)     81 
train_d = theano.function([X, Z], cost, updates=d_updates)     82 gen = 
theano.function([Z], gX)
/home/wilson/anaconda3/lib/python3.5/site-packages/theano/compile/function.py 
in function(inputs, outputs, mode, updates, givens, no_default_updates, 
accept_inplace, name, rebuild_strict, allow_input_downcast, profile, 
on_unused_input)    324                    on_unused_input=on_unused_input,    
325                    profile=profile,--> 326                    
output_keys=output_keys)    327     # We need to add the flag check_aliased 
inputs if we have any mutable or    328     # borrowed used defined inputs
/home/wilson/anaconda3/lib/python3.5/site-packages/theano/compile/pfunc.py in 
pfunc(params, outputs, mode, updates, givens, no_default_updates, 
accept_inplace, name, rebuild_strict, allow_input_downcast, profile, 
on_unused_input, output_keys)    447                                          
rebuild_strict=rebuild_strict,    448                                          
copy_inputs_over=True,--> 449                                          
no_default_updates=no_default_updates)    450     # extracting the arguments    
451     input_variables, cloned_extended_outputs, other_stuff = output_vars
/home/wilson/anaconda3/lib/python3.5/site-packages/theano/compile/pfunc.py in 
rebuild_collect_shared(outputs, inputs, replace, updates, rebuild_strict, 
copy_inputs_over, no_default_updates)    206                        ' function 
to remove broadcastable dimensions.')    207 --> 208             raise 
TypeError(err_msg, err_sug)    209         assert update_val.type == 
store_into.type    210 
TypeError: ('An update must have the same type as the original shared variable 
(shared_var=<TensorType(float32, matrix)>, shared_var.type=TensorType(float32, 
matrix), update_val=Elemwise{add,no_inplace}.0, 
update_val.type=TensorType(float64, matrix)).', 'If the difference is related 
to the broadcast pattern, you can call the tensor.unbroadcast(var, 
axis_to_unbroadcast[, ...]) function to remove broadcastable dimensions.')

-- 

--- 
You received this message because you are subscribed to the Google Groups 
"theano-users" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
For more options, visit https://groups.google.com/d/optout.

Reply via email to