Back to the topic:
Even when I squeeze SIGMA_trf before blowing it up to SIGMA_trf[None, None, 
:] I get this error. I would expect that after squeezing SIGMA_trf I would 
have a object like (,D). Whats wrong with this assumption? Can anyone help?

Am Dienstag, 18. April 2017 22:19:32 UTC+2 schrieb [email protected]:
>
> More or less yes. But the other post was more about using scan in general, 
> now its a special issue I have.
>
> Am Montag, 17. April 2017 14:18:39 UTC+2 schrieb Triet Chau:
>>
>> Hi, does your code still serve the same purpose as that from your 
>> previous post (
>> https://groups.google.com/forum/#!topic/theano-users/gSZLwu8UrO0)?
>>
>> On Wednesday, 12 April 2017 13:04:30 UTC+2, [email protected] 
>> wrote:
>>>
>>> Hello,
>>>
>>> I try to loop with the scan function from theano.
>>> I have a working example:
>>>
>>>
>>>    1. import numpy as np
>>>    2. import theano
>>>    3. import theano.tensor as T 
>>>    4.  
>>>    5. N = 100
>>>    6. M = 50
>>>    7. D = 2
>>>    8. EPhiTPhi = np.zeros((M,M))
>>>    9. Z_n_W = T.dtensor3("Z_n_W")   
>>>    10. MU_S_hat_minus = T.dtensor3("MU_S_hat_minus") 
>>>    11.              
>>>    12. def EPhiTPhi_loop(EPhiTPhi, Z_n_W, MU_S_hat_minus):
>>>    13.    EPhiTPhi = EPhiTPhi + Z_n_W * (T.exp(-0.5 * (MU_S_hat_minus**2
>>>    ).sum(2)));  
>>>    14.    return EPhiTPhi
>>>    15. 
>>>    16. EPhiTPhi_out, _ = theano.scan(EPhiTPhi_loop,
>>>    17.                        outputs_info = EPhiTPhi,
>>>    18.                        sequences = [Z_n_W],
>>>    19.                        non_sequences = [MU_S_hat_minus])
>>>    20. 
>>>    21. OUT = theano.function(inputs=[Z_n_W, MU_S_hat_minus], outputs = 
>>>    EPhiTPhi_out)
>>>    22. 
>>>    23.  
>>>    24. Z_n_W = np.ones((N,M,M))     
>>>    25. MU_S_hat_minus = np.zeros((M,M,D))    
>>>    26. #EPhiTPhi = EPhiTPhi.astype(np.float32)
>>>    27. #Z_n_W = Z_n_W.astype(np.float32)
>>>    28. #MU_S_hat_minus = MU_S_hat_minus.astype(np.float32)
>>>    29. 
>>>    30. LIST = {'Z_n_W': Z_n_W, 'MU_S_hat_minus': MU_S_hat_minus}
>>>    31. 
>>>    32. TEST = OUT(**LIST)
>>>    
>>>
>>> When I try to extend it with one additional sequence variable of size 
>>> (N,D), SIGMA_trf, I expect to hand over to EPhiTPhi_loop a vector with 
>>> size(1,D).
>>> When i want to make a calculation, where i have to blow up this vector 
>>> to SIGMA_trf[None, None, :], I get an error.
>>> Her first the extenden code.
>>>
>>>
>>>    1. import numpy as np
>>>    2. import theano
>>>    3. import theano.tensor as T 
>>>    4.  
>>>    5. N = 100
>>>    6. M = 50
>>>    7. D = 2
>>>    8. EPhiTPhi = np.zeros((M,M))
>>>    9. SIGMA_trf = T.dmatrix("SIGMA_trf")  
>>>    10. Z_n_W = T.dtensor3("Z_n_W")   
>>>    11. MU_S_hat_minus = T.dtensor3("MU_S_hat_minus") 
>>>    12. 
>>>    13.              
>>>    14. def EPhiTPhi_loop(EPhiTPhi, SIGMA_trf, Z_n_W, MU_S_hat_minus):
>>>    15.    EPhiTPhi = EPhiTPhi + Z_n_W * (T.exp(-0.5 * (MU_S_hat_minus**2 
>>>    * SIGMA_trf[None, None, :]).sum(2)));  
>>>    16.    return EPhiTPhi
>>>    17. 
>>>    18. EPhiTPhi_out, _ = theano.scan(EPhiTPhi_loop,
>>>    19.                        outputs_info = EPhiTPhi,
>>>    20.                        sequences = [SIGMA_trf, Z_n_W],
>>>    21.                        non_sequences = [MU_S_hat_minus])
>>>    22. 
>>>    23. OUT = theano.function(inputs=[SIGMA_trf, Z_n_W, MU_S_hat_minus], 
>>>    outputs = EPhiTPhi_out)
>>>    24. 
>>>    25. SIGMA_trf = np.zeros((N,D))    
>>>    26. Z_n_W = np.ones((N,M,M))     
>>>    27. MU_S_hat_minus = np.zeros((M,M,D))    
>>>    28. #EPhiTPhi = EPhiTPhi.astype(np.float32)
>>>    29. #Z_n_W = Z_n_W.astype(np.float32)
>>>    30. #MU_S_hat_minus = MU_S_hat_minus.astype(np.float32)
>>>    31. 
>>>    
>>>    32.  
>>>    33. LIST = {'SIGMA_trf': SIGMA_trf, 'Z_n_W': Z_n_W, 'MU_S_hat_minus': 
>>>    MU_S_hat_minus}
>>>    34. 
>>>    35. TEST = OUT(**LIST)
>>>    
>>>
>>> The error is:
>>>
>>> Traceback (most recent call last):
>>>
>>>   File "<ipython-input-1-dd8e5b5e726c>", line 22, in <module>
>>>     non_sequences = [MU_S_hat_minus])
>>>
>>>   File 
>>> "C:\ProgramData\Anaconda3\lib\site-packages\theano\scan_module\scan.py", 
>>> line 773, in scan
>>>     condition, outputs, updates = scan_utils.get_updates_and_outputs(fn
>>> (*args))
>>>
>>>   File "<ipython-input-1-dd8e5b5e726c>", line 15, in EPhiTPhi_loop
>>>     EPhiTPhi = EPhiTPhi + Z_n_W * (T.exp(-0.5 * (MU_S_hat_minus**2 * 
>>> SIGMA_trf[None, None, :]).sum(2)));
>>>
>>>   File "C:\ProgramData\Anaconda3\lib\site-packages\theano\tensor\var.py"
>>> , line 560, in __getitem__
>>>     view = self.dimshuffle(pattern)
>>>
>>>   File "C:\ProgramData\Anaconda3\lib\site-packages\theano\tensor\var.py"
>>> , line 355, in dimshuffle
>>>     pattern)
>>>
>>>   File 
>>> "C:\ProgramData\Anaconda3\lib\site-packages\theano\tensor\elemwise.py", 
>>> line 177, in __init__
>>>     (input_broadcastable, new_order))
>>>
>>> ValueError: ('You cannot drop a non-broadcastable dimension.', ((False, 
>>> False), ('x', 'x', 0)))
>>>
>>>
>>> Thanks for your help.
>>>
>>

-- 

--- 
You received this message because you are subscribed to the Google Groups 
"theano-users" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
For more options, visit https://groups.google.com/d/optout.

Reply via email to