I think you'll want to ask this question on the Lasagne forum
https://groups.google.com/forum/#!forum/lasagne-users
I don't think it is a problem with how you are using Theano.

On Saturday, April 29, 2017 at 10:46:46 AM UTC-7, Madhavun Candadai wrote:
>
> Hello,
>
> I am trying to set up a recurrent neural network with multiple layers as 
> follows - 
>
> inputs = T.tensor3(name='inputs')
> targets = T.dvector(name='targets')
>
> # Input layer
> l_in = lasagne.layers.InputLayer(([1,1,NUM_SENSORS]),inputs)
>
> # recurrent layer
> initRec1Weights = 
> lasagne.utils.create_param(np.eye(NUM_HIDDEN_UNITS)*4.+np.random.rand(NUM_HIDDEN_UN$
>                                             
> [NUM_HIDDEN_UNITS,NUM_HIDDEN_UNITS])
> initRec2Weights = 
> lasagne.utils.create_param(np.eye(NUM_HIDDEN_UNITS)*4.+np.random.rand(NUM_HIDDEN_UN$
>                                             
> [NUM_HIDDEN_UNITS,NUM_HIDDEN_UNITS])
> initRec3Weights = 
> lasagne.utils.create_param(np.eye(NUM_HIDDEN_UNITS)*4.+np.random.rand(NUM_HIDDEN_UN$
>                                             
> [NUM_HIDDEN_UNITS,NUM_HIDDEN_UNITS])
>
> l_r1 = lasagne.layers.RecurrentLayer(l_in, NUM_HIDDEN_UNITS,
>     W_in_to_hid=lasagne.init.Uniform(range=2,std=None,mean=0.),
>     W_hid_to_hid=initRec1Weights,#lasagne.init.Constant(4.),
>     b=lasagne.init.Constant(0.),
>     nonlinearity=lasagne.nonlinearities.sigmoid,
>     gradient_steps=20) # number of steps for BPTT to unroll network
>
> l_r2 = lasagne.layers.RecurrentLayer(l_r1, NUM_HIDDEN_UNITS,
>     W_in_to_hid=lasagne.init.Uniform(range=2,std=None,mean=0.),
>     W_hid_to_hid=initRec2Weights,#lasagne.init.Constant(4.),
>     b=lasagne.init.Constant(0.),
>     nonlinearity=lasagne.nonlinearities.sigmoid,
>     gradient_steps=BPTT_STEPS) # number of steps for BPTT to unroll network
>
> l_r3 = lasagne.layers.RecurrentLayer(l_r2, NUM_HIDDEN_UNITS,
>     W_in_to_hid=lasagne.init.Uniform(range=2,std=None,mean=0.),
>     W_hid_to_hid=initRec3Weights,#lasagne.init.Constant(4.),
>     b=lasagne.init.Constant(0.),
>     nonlinearity=lasagne.nonlinearities.sigmoid,
>     gradient_steps=BPTT_STEPS) # number of steps for BPTT to unroll network
>
> # output layer
> l_out = lasagne.layers.DenseLayer(l_r3, NUM_OUTPUTS,
>     W=lasagne.init.Uniform(range=2,std=None,mean=0.),
>     nonlinearity=lasagne.nonlinearities.sigmoid)
>
> but I am getting the following error - 
>
> Traceback (most recent call last):
>   File "categAgent.py", line 203, in <module>
>     gradient_steps=20) # number of steps for BPTT to unroll network
>   File 
> "/home/madvn/anaconda2/lib/python2.7/site-packages/lasagne/layers/recurrent.py",
>  
> line 552, in __init__
>     in_to_hid = DenseLayer(InputLayer((None,) + input_shape[2:]),
> TypeError: can only concatenate tuple (not "list") to tuple
>
> Please help.  Thanks
>
> - Madhavun
>

-- 

--- 
You received this message because you are subscribed to the Google Groups 
"theano-users" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
For more options, visit https://groups.google.com/d/optout.

Reply via email to