Steps to setup an SSL-enabled environment with Tomcat

Introduction to SSL

SSL, or Secure Sockets Layer, is a technology, which allows web browsers and web servers to communicate over a secured connection. This means that the data being sent is encrypted by one side, transmitted, then decrypted by the other side prior to any processing. This is a two-way process, meaning that both the server and the browser encrypt all traffic before sending out data.

Tomcat and SSL

It is important to note that configuring Tomcat to take advantage of secure sockets is usually only necessary when running it as a standalone web server. When running Tomcat primarily as a Servlet/JSP container behind another web server, such as Apache or Microsoft IIS, it is usually necessary to configure the primary web server to handle the SSL connections from users. Typically, this server will negotiate all SSL-related functionality, then pass on any requests destined for the Tomcat container only after decrypting those requests. Likewise, Tomcat will return clear text responses, which will then be encrypted by the primary server before being returned to the user's browser. In this environment, Tomcat knows that communications between the primary web server and the client are taking place over a secure connection (because your application needs to be able to ask about this), but it does not participate in the encryption or decryption itself.

Certificates

In order to implement SSL, a web server must have an associated certificate for each external interface (IP address) that accepts secure connections. The theory behind certificates is that a server should provide some kind of reasonable assurance that its owner is whom you think it is, particularly before receiving any sensitive information. It states what company a site is associated with, along with some basic contact information about the site's owner and/or administrator.

This certificate is cryptographically signed by its owner, and is therefore extremely difficult for anyone else to forge. For sites involved in e-commerce, or any other business transaction in which authentication of identity is important, a certificate is typically purchased from a well-known Certificate Authority (CA) such as VeriSign or Thawte. Such certificates can be electronically verified --- in effect, the CA will vouch for the authenticity of the certificates that it grants, so you can, ostensibly, trust that a given certificate is valid if you trust the CA who granted it.

Installing Java™ Secure Socket Extension 1.0.2 (JSSE)

The first step to enabling SSL communication is to install the JSSE package. JSSE 1.0.2 is supplied as an extension to the Java 2 platform. JSSE is implemented via a Java Cryptography Architecture (JCA) security provider class called "SunJSSE."

Note:

(Windows and Solaris use different pathname separators, so please use the appropriate one ("\", "/") for your environment.)

<java-home> refers to the directory where the Java 2 Runtime Environment (JRE) was installed. The Java 2 SDK (a.k.a. JDK) contains the JRE, but at a different level in the file hierarchy. For example, if the Java 2 SDK or JRE was installed
in /home/user1, <java-home> would be:

/home/user1/jre1.2.x

[JRE]

/home/user1/jdk1.2.x/jre

[SDK]

Download JSSE 1.0.2.

You can save the downloaded file anywhere on your local disk. Note that JSSE 1.0.2 requires that you have Java™ 2 SDK v 1.2.1 or greater or Java™ 2 Runtime Environment v.1.2.1 or greater already installed.

Uncompress and extract the downloaded file.

This will create a directory named jsse1.0.2, with two
subdirectories named doc and lib.

Install the JSSE jar files.

The JSSE lib subdirectory contains the extension files jsse.jar,
jcert.jar, and jnet.jar. You can either install these files in the JDK/JRE ("installed extension") or bundle them with your applet or application ("bundled extension"). If you wish to install them as an installed extension, place them in the following directory:

<java-home>/lib/ext

Register the SunJSSE provider.

JSSE 1.0.2 comes standard with a Cryptographic Service Provider,
or "provider" for short, named "SunJSSE". Although the "SunJSSE" provider is supplied with every JSSE 1.0.2 installation, it still needs to be configured explicitly before its services can be accessed.

Add the "SunJSSE" provider to your list of approved providers. This is done statically by editing the security properties file:

<java-home>\lib\security\java.security [Win32]

<java-home>/lib/security/java.security [Solaris]

One of the types of properties contained in the java.security file is of the following form:

security.provider.n=providerClassName

This declares a provider, and specifies its preference order "n". The preference order is the order in which providers are searched for requested algorithms (when no specific provider is requested). The order is 1-based; 1 is the most preferred, followed by 2, and so on.

Add the above line to java.security, replacing providerClassName with com.sun.net.ssl.internal.ssl.Provider, and substituting n with the priority that you would like to assign to the "SunJSSE" provider. For example, to add the Sun internal SSL provider to the standard provider shipped with the JRE, your entries would look like:

security.provider.1=sun.security.provider.Sun

security.provider.2=com.sun.net.ssl.internal.ssl.Provider

"SunJSSE" would now be the second preferred provider.

Note:

The system classpath is effectively ignored by Tomcat, so including the JSSE jars there will not make them available for use by the Tomcat engine during runtime. Also, do not copy these jars into any of the internal Tomcat repositories (the $TOMCAT_HOME/lib/* directories, individual webapp directories, etc.). Doing so may cause Tomcat to fail, as these libraries should only be loaded by the system classloader.

Prepare the Certificate Keystore

A "keystore" is essentially just a repository file for cryptographic objects, such as keys and certificates. Tomcat currently operates only on JKS format keystores. This is Java's standard "Java KeyStore" format, and is the format created by the keytool command-line utility. This tool is included in the JDK.

To create a new keystore from scratch, containing a single self-signed certificate, execute the following from a terminal command line:

%JAVA_HOME%\bin\keytool -genkey -alias tomcat -keyalg RSA

This command will create a new file, in the home directory of the user under which you run it, named ".keystore". After executing the keytool command, you will first be prompted for the keystore password. The default password used by Tomcat is "changeit" (all lower case), although you can specify a custom password if you like. Again, this will need to be reflected in the server.xml configuration file.

$JAVA_HOME/bin/keytool -genkey -alias tomcat -keyalg RSA
Enter keystore password: changeit
What is your first and last name?
 [Unknown]: www.vercingetorix.org
What is the name of your organizational unit?
 [Unknown]: Chief
What is the name of your organization?
 [Unknown]: Gaulois
What is the name of your City or Locality?
 [Unknown]: Alesia
What is the name of your State or Province?
 [Unknown]: 50
What is the two-letter country code for this unit?
 [Unknown]: FR
Is <CN=www.vercingetorix.org, OU=Chief, O=Gaulois, L=Alesia, ST=50, C=FR> correct?
 [no]: yes

Finally, you will be prompted for the key password, which is the password specifically for this Certificate (as opposed to any other Certificates stored in the same keystore file). You MUST use the same password here as was used for the keystore password itself. (Currently, pressing the ENTER at this prompt will automatically do this.)
Note:

Make sure when asked for the first and last name, you supply a valid domain name. Another thing to keep in mind is the two-letter country code; this should be an ISO country code.

Acquiring a certificate

After creating the self-signed certificate, you will need to export it in order to acquire a certificate from a CA. To do so you execute the following command:

%JAVA_HOME%\bin\keytool -certreq -alias tomcat –file req.csr
The file req.csr will contain the key you should supply the CA with in order to get it signed. The CA will sign the certificate with their private key and send it back to you.

Before importing the signed certificate into your keystore, you should make sure that the root CA certificate is in your cacerts keystore. There is only one cacerts file that comes preloaded with the JRE/JDK. It contains your authority certificates. In order to import the root CA certificate into the cacerts, execute the following command:

%JAVA_HOME%\bin\keytool –import –alias cacerts –trustcacerts –file %CA root certificate file name%

Now it is time to import the signed certificate into your keystore. Before doing so make sure the certificate is in X509/DER or PKCS#7 encoding. If this were not the case (for example it is in a .cer file), then double clicking on the file would open a dialog box. The second (Details) tab in this box contains a “Copy to file…” button, which will export the certificate into a file with the required encoding. After ensuring the correct encoding of the certificate, execute the following command:

%JAVA_HOME%\bin\keytool –import –alias tomcat –trustcacerts –file %signed certificate file name%

Note:

You can acquire a trial certificate from Verisign or Thawte.

Edit the Tomcat Configuration File

To configure a secure (SSL) HTTP connector for Tomcat, verify that it is activated in the $TOMCAT_HOME/conf/server.xml file (the standard version of this file, as shipped with Tomcat, contains a simple example which is commented-out by default).

Syntax for Tomcat 3.3:

<Http10Connector
 port="8443"
 secure="true"
 keypass="mynewpass"
 clientAuth="false" />

In the above examples, we indicate that the keystore is file located at /var/tomcat/conf/keystore, and the password if "mynewpass". Again, these attributes can be skipped if the Tomcat defaults were used. Also, we specified that we don't want to enforce client authentication.

