Do you want : the roots of 1 ? or something more general ? Because the nth-roots of 1 are defined by :
r = exp(2*i*pi*k/n) with k = {0,1,...n-1}
If it's more complex ... then I don't know :)
Pierre
Dick Moores a écrit :
My trusty $10 Casio calculator tells me that the 3 cube roots of 1 are:
1, (-.5 +0.866025403j), and (-.5 -0.866025403j), or thereabouts. Is there a way to do this in Python?
Checking the Casio results with Python: >>> 1**3 1 >>> (-.5 + .866025403j)**3 (0.99999999796196859+1.1766579932626087e-009j) >>> (-.5 - .866025403j)**3 (0.99999999796196859-1.1766579932626087e-009j)
Thanks,
Dick Moores [EMAIL PROTECTED]
_______________________________________________ Tutor maillist - [EMAIL PROTECTED] http://mail.python.org/mailman/listinfo/tutor
-- Pierre Barbier de Reuille
INRA - UMR Cirad/Inra/Cnrs/Univ.MontpellierII AMAP Botanique et Bio-informatique de l'Architecture des Plantes TA40/PSII, Boulevard de la Lironde 34398 MONTPELLIER CEDEX 5, France
tel : (33) 4 67 61 65 77 fax : (33) 4 67 61 56 68 _______________________________________________ Tutor maillist - [EMAIL PROTECTED] http://mail.python.org/mailman/listinfo/tutor