On 02/21/2014 09:51 PM, Chin Liang See wrote: > To add the Denali NAND driver support into U-Boot. It required > information such as register base address from configuration > header file within include/configs folder. > > Signed-off-by: Chin Liang See <cl...@altera.com> > Cc: Artem Bityutskiy <artem.bityuts...@linux.intel.com> > Cc: David Woodhouse <david.woodho...@intel.com> > Cc: Brian Norris <computersforpe...@gmail.com> > Cc: Scott Wood <scottw...@freescale.com> > --- > Changes for v2 > - Enable this driver support for SOCFPGA > --- > drivers/mtd/nand/Makefile | 1 + > drivers/mtd/nand/denali_nand.c | 1166 > ++++++++++++++++++++++++++++++++++++++++ > drivers/mtd/nand/denali_nand.h | 501 +++++++++++++++++ > 3 files changed, 1668 insertions(+) > create mode 100644 drivers/mtd/nand/denali_nand.c > create mode 100644 drivers/mtd/nand/denali_nand.h > > diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile > index 02b149c..24e8218 100644 > --- a/drivers/mtd/nand/Makefile > +++ b/drivers/mtd/nand/Makefile > @@ -39,6 +39,7 @@ obj-$(CONFIG_NAND_ECC_BCH) += nand_bch.o > obj-$(CONFIG_NAND_ATMEL) += atmel_nand.o > obj-$(CONFIG_DRIVER_NAND_BFIN) += bfin_nand.o > obj-$(CONFIG_NAND_DAVINCI) += davinci_nand.o > +obj-$(CONFIG_NAND_DENALI) += denali_nand.o > obj-$(CONFIG_NAND_FSL_ELBC) += fsl_elbc_nand.o > obj-$(CONFIG_NAND_FSL_IFC) += fsl_ifc_nand.o > obj-$(CONFIG_NAND_FSL_UPM) += fsl_upm.o > diff --git a/drivers/mtd/nand/denali_nand.c b/drivers/mtd/nand/denali_nand.c > new file mode 100644 > index 0000000..55246c9 > --- /dev/null > +++ b/drivers/mtd/nand/denali_nand.c > @@ -0,0 +1,1166 @@ > +/* > + * Copyright (C) 2013 Altera Corporation <www.altera.com>
What about 2014? > + * Copyright (C) 2009-2010, Intel Corporation and its suppliers. > + * > + * SPDX-License-Identifier: GPL-2.0+ > + */ > + > +#include <common.h> > +#include <nand.h> > +#include <asm/errno.h> > +#include <asm/io.h> > + > +#include "denali_nand.h" > + > +/* We define a module parameter that allows the user to override > + * the hardware and decide what timing mode should be used. > + */ > +#define NAND_DEFAULT_TIMINGS -1 > + > +static struct denali_nand_info denali; > +static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; > + > +/* We define a macro here that combines all interrupts this driver uses into > + * a single constant value, for convenience. */ > +#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \ > + INTR_STATUS__ECC_TRANSACTION_DONE | \ > + INTR_STATUS__ECC_ERR | \ > + INTR_STATUS__PROGRAM_FAIL | \ > + INTR_STATUS__LOAD_COMP | \ > + INTR_STATUS__PROGRAM_COMP | \ > + INTR_STATUS__TIME_OUT | \ > + INTR_STATUS__ERASE_FAIL | \ > + INTR_STATUS__RST_COMP | \ > + INTR_STATUS__ERASE_COMP | \ > + INTR_STATUS__ECC_UNCOR_ERR | \ > + INTR_STATUS__INT_ACT | \ > + INTR_STATUS__LOCKED_BLK) > + > +/* indicates whether or not the internal value for the flash bank is > + * valid or not */ > +#define CHIP_SELECT_INVALID -1 > + > +#define SUPPORT_8BITECC 1 > + > +/* This macro divides two integers and rounds fractional values up > + * to the nearest integer value. */ > +#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y))) > + > +/* These constants are defined by the driver to enable common driver > + * configuration options. */ > +#define SPARE_ACCESS 0x41 > +#define MAIN_ACCESS 0x42 > +#define MAIN_SPARE_ACCESS 0x43 > + > +#define DENALI_UNLOCK_START 0x10 > +#define DENALI_UNLOCK_END 0x11 > +#define DENALI_LOCK 0x21 > +#define DENALI_LOCK_TIGHT 0x31 > +#define DENALI_BUFFER_LOAD 0x60 > +#define DENALI_BUFFER_WRITE 0x62 > + > +#define DENALI_READ 0 > +#define DENALI_WRITE 0x100 > + > +/* types of device accesses. We can issue commands and get status */ > +#define COMMAND_CYCLE 0 > +#define ADDR_CYCLE 1 > +#define STATUS_CYCLE 2 > + > +/* this is a helper macro that allows us to > + * format the bank into the proper bits for the controller */ > +#define BANK(x) ((x) << 24) > + > +/* Interrupts are cleared by writing a 1 to the appropriate status bit */ > +static inline void clear_interrupt(uint32_t irq_mask) > +{ > + uint32_t intr_status_reg = 0; > + intr_status_reg = INTR_STATUS(denali.flash_bank); > + __raw_writel(irq_mask, denali.flash_reg + intr_status_reg); > +} > + > +static uint32_t read_interrupt_status(void) > +{ > + uint32_t intr_status_reg = 0; > + intr_status_reg = INTR_STATUS(denali.flash_bank); > + return __raw_readl(denali.flash_reg + intr_status_reg); > +} > + > +static void clear_interrupts(void) > +{ > + uint32_t status = 0x0; just 0 > + status = read_interrupt_status(); > + clear_interrupt(status); > + denali.irq_status = 0x0; just 0 > +} > + > +static void denali_irq_enable(uint32_t int_mask) > +{ > + int i; > + for (i = 0; i < denali.max_banks; ++i) > + __raw_writel(int_mask, denali.flash_reg + INTR_EN(i)); > +} > + > +static uint32_t wait_for_irq(uint32_t irq_mask) > +{ > + unsigned long comp_res = 1000; > + uint32_t intr_status = 0; do you need to init this? > + > + do { > + intr_status = read_interrupt_status() & DENALI_IRQ_ALL; > + if (intr_status & irq_mask) { > + denali.irq_status &= ~irq_mask; > + /* our interrupt was detected */ > + break; > + } > + udelay(1); > + comp_res--; > + } while (comp_res != 0); > + > + if (comp_res == 0) { > + /* timeout */ > + printf("Denali timeout with interrupt status %08x\n", > + read_interrupt_status()); > + intr_status = 0; > + } > + return intr_status; > +} > + > +/* Certain operations for the denali NAND controller use > + * an indexed mode to read/write data. The operation is > + * performed by writing the address value of the command > + * to the device memory followed by the data. This function > + * abstracts this common operation. > +*/ weird comment coding style check globally. > +static void index_addr(uint32_t address, uint32_t data) > +{ > + __raw_writel(address, denali.flash_mem); > + __raw_writel(data, denali.flash_mem + 0x10); > +} > + > +/* Perform an indexed read of the device */ > +static void index_addr_read_data(uint32_t address, uint32_t *pdata) > +{ > + __raw_writel(address, denali.flash_mem); > + *pdata = __raw_readl(denali.flash_mem + 0x10); > +} > + > +/* We need to buffer some data for some of the NAND core routines. > + * The operations manage buffering that data. */ > +static void reset_buf(void) > +{ > + denali.buf.head = denali.buf.tail = 0; > +} > + > +static void write_byte_to_buf(uint8_t byte) > +{ > + BUG_ON(denali.buf.tail >= sizeof(denali.buf.buf)); > + denali.buf.buf[denali.buf.tail++] = byte; > +} > + > +/* resets a specific device connected to the core */ > +static void reset_bank(void) > +{ > + uint32_t irq_status = 0; ditto. > + uint32_t irq_mask = INTR_STATUS__RST_COMP | > + INTR_STATUS__TIME_OUT; > + > + clear_interrupts(); > + > + __raw_writel(1 << denali.flash_bank, denali.flash_reg + DEVICE_RESET); > + > + irq_status = wait_for_irq(irq_mask); > + if (irq_status & INTR_STATUS__TIME_OUT) > + debug(KERN_ERR "reset bank failed.\n"); > +} > + > +/* Reset the flash controller */ > +static uint16_t denali_nand_reset(void) > +{ > + uint32_t i; > + > + for (i = 0 ; i < denali.max_banks; i++) fix all checkpatch warnings. This is also broken coding style. total: 0 errors, 15 warnings, 24 checks, 1674 lines checked > + __raw_writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, > + denali.flash_reg + INTR_STATUS(i)); > + > + for (i = 0 ; i < denali.max_banks; i++) { > + __raw_writel(1 << i, denali.flash_reg + DEVICE_RESET); > + while (!(__raw_readl(denali.flash_reg + INTR_STATUS(i)) & > + (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT))) > + if (__raw_readl(denali.flash_reg + INTR_STATUS(i)) & > + INTR_STATUS__TIME_OUT) > + debug(KERN_DEBUG "NAND Reset operation " > + "timed out on bank %d\n", i); > + } > + > + for (i = 0; i < denali.max_banks; i++) > + __raw_writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, > + denali.flash_reg + INTR_STATUS(i)); > + > + return PASS; > +} > + > +/* this routine calculates the ONFI timing values for a given mode and > + * programs the clocking register accordingly. The mode is determined by > + * the get_onfi_nand_para routine. > + */ > +static void nand_onfi_timing_set(uint16_t mode) > +{ > + uint16_t Trea[6] = {40, 30, 25, 20, 20, 16}; > + uint16_t Trp[6] = {50, 25, 17, 15, 12, 10}; > + uint16_t Treh[6] = {30, 15, 15, 10, 10, 7}; > + uint16_t Trc[6] = {100, 50, 35, 30, 25, 20}; > + uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15}; > + uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5}; > + uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25}; > + uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70}; > + uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100}; > + uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100}; > + uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60}; > + uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15}; > + > + uint16_t TclsRising = 1; > + uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid; > + uint16_t dv_window = 0; > + uint16_t en_lo, en_hi; > + uint16_t acc_clks; > + uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt; > + > + en_lo = CEIL_DIV(Trp[mode], CLK_X); > + en_hi = CEIL_DIV(Treh[mode], CLK_X); > +#if ONFI_BLOOM_TIME > + if ((en_hi * CLK_X) < (Treh[mode] + 2)) > + en_hi++; > +#endif > + > + if ((en_lo + en_hi) * CLK_X < Trc[mode]) > + en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X); > + > + if ((en_lo + en_hi) < CLK_MULTI) > + en_lo += CLK_MULTI - en_lo - en_hi; > + > + while (dv_window < 8) { > + data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode]; > + > + data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode]; > + > + data_invalid = > + data_invalid_rhoh < > + data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh; > + > + dv_window = data_invalid - Trea[mode]; > + > + if (dv_window < 8) > + en_lo++; > + } > + > + acc_clks = CEIL_DIV(Trea[mode], CLK_X); > + > + while (((acc_clks * CLK_X) - Trea[mode]) < 3) > + acc_clks++; > + > + if ((data_invalid - acc_clks * CLK_X) < 2) > + debug(KERN_WARNING "%s, Line %d: Warning!\n", > + __FILE__, __LINE__); > + > + addr_2_data = CEIL_DIV(Tadl[mode], CLK_X); > + re_2_we = CEIL_DIV(Trhw[mode], CLK_X); > + re_2_re = CEIL_DIV(Trhz[mode], CLK_X); > + we_2_re = CEIL_DIV(Twhr[mode], CLK_X); > + cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X); > + if (!TclsRising) > + cs_cnt = CEIL_DIV(Tcs[mode], CLK_X); > + if (cs_cnt == 0) > + cs_cnt = 1; > + > + if (Tcea[mode]) { > + while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode]) > + cs_cnt++; > + } > + > +#if MODE5_WORKAROUND > + if (mode == 5) > + acc_clks = 5; > +#endif > + > + /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */ > + if ((__raw_readl(denali.flash_reg + MANUFACTURER_ID) == 0) && > + (__raw_readl(denali.flash_reg + DEVICE_ID) == 0x88)) > + acc_clks = 6; > + > + __raw_writel(acc_clks, denali.flash_reg + ACC_CLKS); > + __raw_writel(re_2_we, denali.flash_reg + RE_2_WE); > + __raw_writel(re_2_re, denali.flash_reg + RE_2_RE); > + __raw_writel(we_2_re, denali.flash_reg + WE_2_RE); > + __raw_writel(addr_2_data, denali.flash_reg + ADDR_2_DATA); > + __raw_writel(en_lo, denali.flash_reg + RDWR_EN_LO_CNT); > + __raw_writel(en_hi, denali.flash_reg + RDWR_EN_HI_CNT); > + __raw_writel(cs_cnt, denali.flash_reg + CS_SETUP_CNT); > +} > + > +/* queries the NAND device to see what ONFI modes it supports. */ > +static uint16_t get_onfi_nand_para(void) > +{ > + int i; > + /* we needn't to do a reset here because driver has already > + * reset all the banks before > + * */ > + if (!(__raw_readl(denali.flash_reg + ONFI_TIMING_MODE) & > + ONFI_TIMING_MODE__VALUE)) > + return FAIL; > + > + for (i = 5; i > 0; i--) { > + if (__raw_readl(denali.flash_reg + ONFI_TIMING_MODE) & > + (0x01 << i)) > + break; > + } > + > + nand_onfi_timing_set(i); > + > + /* By now, all the ONFI devices we know support the page cache */ > + /* rw feature. So here we enable the pipeline_rw_ahead feature */ > + /* __raw_writel(1, denali.flash_reg + CACHE_WRITE_ENABLE); */ > + /* __raw_writel(1, denali.flash_reg + CACHE_READ_ENABLE); */ Dead code? <snip> > +/* lld_nand.h */ > +/* > + * NAND Flash Controller Device Driver > + * Copyright (c) 2009, Intel Corporation and its suppliers. > + * > + * This program is free software; you can redistribute it and/or modify it > + * under the terms and conditions of the GNU General Public License, > + * version 2, as published by the Free Software Foundation. > + * > + * This program is distributed in the hope it will be useful, but WITHOUT > + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or > + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for > + * more details. > + * > + * You should have received a copy of the GNU General Public License along > with > + * this program; if not, write to the Free Software Foundation, Inc., > + * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. Isn't this pretty weird if we are using SPDX? Thanks, Michal -- Michal Simek, Ing. (M.Eng), OpenPGP -> KeyID: FE3D1F91 w: www.monstr.eu p: +42-0-721842854 Maintainer of Linux kernel - Microblaze cpu - http://www.monstr.eu/fdt/ Maintainer of Linux kernel - Xilinx Zynq ARM architecture Microblaze U-BOOT custodian and responsible for u-boot arm zynq platform
signature.asc
Description: OpenPGP digital signature
_______________________________________________ U-Boot mailing list U-Boot@lists.denx.de http://lists.denx.de/mailman/listinfo/u-boot