On Tue, 12 Feb 2013 20:19:19 +0000
Richard Wordingham <[email protected]> wrote:


> Let F be the set of all CFCD strings.
> Let E(s) be the set of CFCD strings canonically equivalent to s.
> Let U be the set of strings of length one.
> 
> Let T be a set of NFD collating elements.  Then the canonical closure
> S of T is the least set such that:
> 
> 1) E(T) ⊂ S
> 2) If xu ∈ S, vy ∈ T, u and v are characters, and vy is the last
> collation element in xuvy, then x(E(uv) ∩ U ∩ F)E(y) ⊂ S.

CORRECTION: 'Collating element', not 'collation element'.

If the 'collating element' requirement seems odd, remember that Danish
has collating elements 'a' and 'aa'.

Richard.


Reply via email to