Flink 1.10,windows 10 flink api验证

代码如下
```

import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.IngestionTimeExtractor;
import 
org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import 
org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;

import java.util.ArrayList;
import java.util.List;

public class KeyedStreamJob {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = 
StreamExecutionEnvironment.getExecutionEnvironment();
        env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime);
//        env.setParallelism(3);

        Tuple2<String, Integer> item = null;
        List<Tuple2<String, Integer>> items = new ArrayList<>();
        item = new Tuple2<>("k1", 1);
        items.add(item);
        item = new Tuple2<>("k3", 10);
        items.add(item);
        item = new Tuple2<>("k1", 10);
        items.add(item);
        item = new Tuple2<>("k2", 2);
        items.add(item);
        item = new Tuple2<>("k1", 11);
        items.add(item);
        item = new Tuple2<>("k2", 20);
        items.add(item);
        DataStreamSource<Tuple2<String, Integer>> streamSource = 
env.fromCollection(items);
        streamSource
                //by 1
                //.assignTimestampsAndWatermarks(new IngestionTimeExtractor())
                .keyBy(new KeySelector<Tuple2<String, Integer>, String>() {
            @Override
            public String getKey(Tuple2<String, Integer> value) throws 
Exception {
                return value.f0;
            }
        })
                .window(TumblingEventTimeWindows.of(Time.milliseconds(10L)))
                .sum(1)
                .print("+++++++++++++++++++++++++++");

        env.execute("keyedSteamJob");
    }
}

```
输出
```
+++++++++++++++++++++++++++:1> (k3,10)
+++++++++++++++++++++++++++:2> (k1,1)
+++++++++++++++++++++++++++:8> (k2,22)
+++++++++++++++++++++++++++:2> (k1,21)
```
如果把

window(TumblingEventTimeWindows.of(Time.milliseconds(10L)))
改成

.window(TumblingEventTimeWindows.of(Time.seconds(10L)))
输出
```
+++++++++++++++++++++++++++:8> (k2,22)
+++++++++++++++++++++++++++:1> (k3,10)
+++++++++++++++++++++++++++:2> (k1,22)
```
两次不同的windows窗口,第一次输出对于key=‘k1‘不聚集,第二次输出聚集

为什么会这样,如何验证怎么样的过程处理流程导致这样的结果区别

如果k1=1已经在ValueState中(2>(k1,1)),
那么再次输出时currentKey=k1时,这个时候ValueState的value是1,那么输出应该是10+11+1,而不是10+11;


如果window改成1秒也是按照正常结果输出





发送自 Windows 10 版邮件<https://go.microsoft.com/fwlink/?LinkId=550986>应用

回复