有没有人懂啊。今天的新发现如下。
我看了下我的source结点的WEB-UI上展示的那个名字,然后在文本编辑器中划分了下。发现如下。
方案2:
Source: TableSourceScan(table=[[default_catalog, default_database,
baidu_log, watermark=[-(TO_TIMESTAMP(FROM_UNIXTIME(/(CASE(IS NOT
NULL($1), CAST($1):BIGINT NOT NULL, 0:BIGINT), 1000))), 60000:INTERVAL
SECOND)]]], fields=[cid, server_time, d])
 -> (
  Calc(select=[(d ITEM _UTF-16LE'106') AS $f0, ((d ITEM _UTF-16LE'77')
IS NOT NULL CASE CAST((d ITEM _UTF-16LE'77')) CASE
_UTF-16LE'NULL':VARCHAR(2147483647) CHARACTER SET "UTF-16LE") AS $f1,
Reinterpret(TO_TIMESTAMP(FROM_UNIXTIME(((server_time IS NOT NULL CASE
CAST(server_time) CASE 0:BIGINT) / 1000)))) AS event_time]),
  Calc(select=[(d ITEM _UTF-16LE'106') AS $f0, ((d ITEM _UTF-16LE'79')
IS NOT NULL CASE CAST((d ITEM _UTF-16LE'79')) CASE
_UTF-16LE'NULL':VARCHAR(2147483647) CHARACTER SET "UTF-16LE") AS $f1,
Reinterpret(TO_TIMESTAMP(FROM_UNIXTIME(((server_time IS NOT NULL CASE
CAST(server_time) CASE 0:BIGINT) / 1000)))) AS event_time]),
  Calc(select=[(d ITEM _UTF-16LE'106') AS $f0, ((d ITEM _UTF-16LE'80')
IS NOT NULL CASE CAST((d ITEM _UTF-16LE'80')) CASE
_UTF-16LE'NULL':VARCHAR(2147483647) CHARACTER SET "UTF-16LE") AS $f1,
Reinterpret(TO_TIMESTAMP(FROM_UNIXTIME(((server_time IS NOT NULL CASE
CAST(server_time) CASE 0:BIGINT) / 1000)))) AS event_time]),
  Calc(select=[(d ITEM _UTF-16LE'106') AS $f0, ((d ITEM _UTF-16LE'81')
IS NOT NULL CASE CAST((d ITEM _UTF-16LE'81')) CASE
_UTF-16LE'NULL':VARCHAR(2147483647) CHARACTER SET "UTF-16LE") AS $f1,
Reinterpret(TO_TIMESTAMP(FROM_UNIXTIME(((server_time IS NOT NULL CASE
CAST(server_time) CASE 0:BIGINT) / 1000)))) AS event_time]),
  Calc(select=[(d ITEM _UTF-16LE'106') AS $f0, ((d ITEM _UTF-16LE'83')
IS NOT NULL CASE CAST((d ITEM _UTF-16LE'83')) CASE
_UTF-16LE'NULL':VARCHAR(2147483647) CHARACTER SET "UTF-16LE") AS $f1,
Reinterpret(TO_TIMESTAMP(FROM_UNIXTIME(((server_time IS NOT NULL CASE
CAST(server_time) CASE 0:BIGINT) / 1000)))) AS event_time]),
  Calc(select=[(d ITEM _UTF-16LE'106') AS $f0, ((d ITEM _UTF-16LE'84')
IS NOT NULL CASE CAST((d ITEM _UTF-16LE'84')) CASE
_UTF-16LE'NULL':VARCHAR(2147483647) CHARACTER SET "UTF-16LE") AS $f1,
Reinterpret(TO_TIMESTAMP(FROM_UNIXTIME(((server_time IS NOT NULL CASE
CAST(server_time) CASE 0:BIGINT) / 1000)))) AS event_time]),
  Calc(select=[(d ITEM _UTF-16LE'106') AS $f0, ((d ITEM _UTF-16LE'86')
IS NOT NULL CASE CAST((d ITEM _UTF-16LE'86')) CASE
_UTF-16LE'NULL':VARCHAR(2147483647) CHARACTER SET "UTF-16LE") AS $f1,
Reinterpret(TO_TIMESTAMP(FROM_UNIXTIME(((server_time IS NOT NULL CASE
CAST(server_time) CASE 0:BIGINT) / 1000)))) AS event_time])
 )

方案3:
Source: TableSourceScan(table=[[default_catalog, default_database,
dr1, watermark=[-(TO_TIMESTAMP(FROM_UNIXTIME(/(CASE(IS NOT NULL($1),
CAST($1):BIGINT NOT NULL, 0:BIGINT), 1000))), 60000:INTERVAL
SECOND)]]], fields=[cid, server_time, d])
 -> (
  Calc(select=[Reinterpret(TO_TIMESTAMP(FROM_UNIXTIME(((server_time IS
NOT NULL CASE CAST(server_time) CASE 0:BIGINT) / 1000)))) AS
event_time, (d ITEM _UTF-16LE'106') AS su

pply_id, _UTF-16LE'd107':VARCHAR(4) CHARACTER SET "UTF-16LE" AS
field_key, ((d ITEM _UTF-16LE'107') IS NOT NULL CASE CAST((d ITEM
_UTF-16LE'107')) CASE _UTF-16LE'NULL':VARCHAR(2147483647) CHARACTER
SET "UTF-16LE") AS field_value]),

  Calc(select=[Reinterpret(TO_TIMESTAMP(FROM_UNIXTIME(((server_time IS
NOT NULL CASE CAST(server_time) CASE 0:BIGINT) / 1000)))) AS
event_time, (d ITEM _UTF-16LE'106') AS supply_id,
_UTF-16LE'd77':VARCHAR(4) CHARACTER SET "UTF-16LE" AS field_key, ((d
ITEM _UTF-16LE'77') IS NOT NULL CASE CAST((d ITEM _UTF-16LE'77')) CASE
_UTF-16LE'NULL':VARCHAR(2147483647) CHARACTER SET "UTF-16LE") AS
field_value]),

  Calc(select=[Reinterpret(TO_TIMESTAMP(FROM_UNIXTIME(((server_time IS
NOT NULL CASE CAST(server_time) CASE 0:BIGINT) / 1000)))) AS
event_time, (d ITEM _UTF-16LE'106') AS supply_id,
_UTF-16LE'd79':VARCHAR(4) CHARACTER SET "UTF-16LE" AS field_key, ((d
ITEM _UTF-16LE'79') IS NOT NULL CASE CAST((d ITEM _UTF-16LE'79')) CASE
_UTF-16LE'NULL':VARCHAR(2147483647) CHARACTER SET "UTF-16LE") AS
field_value]),

  Calc(select=[Reinterpret(TO_TIMESTAMP(FROM_UNIXTIME(((server_time IS
NOT NULL CASE CAST(server_time) CASE 0:BIGINT) / 1000)))) AS
event_time, (d ITEM _UTF-16LE'106') AS supply_id,
_UTF-16LE'd80':VARCHAR(4) CHARACTER SET "UTF-16LE" AS field_key, ((d
ITEM _UTF-16LE'80') IS NOT NULL CASE CAST((d ITEM _UTF-16LE'80')) CASE
_UTF-16LE'NULL':VARCHAR(2147483647) CHARACTER SET "UTF-16LE") AS
field_value]),

  Calc(select=[Reinterpret(TO_TIMESTAMP(FROM_UNIXTIME(((server_time IS
NOT NULL CASE CAST(server_time) CASE 0:BIGINT) / 1000)))) AS
event_time, (d ITEM _UTF-16LE'106') AS supply_id,
_UTF-16LE'd81':VARCHAR(4) CHARACTER SET "UTF-16LE" AS field_key, ((d
ITEM _UTF-16LE'81') IS NOT NULL CASE CAST((d ITEM _UTF-16LE'81')) CASE
_UTF-16LE'NULL':VARCHAR(2147483647) CHARACTER SET "UTF-16LE") AS
field_value]),

  Calc(select=[Reinterpret(TO_TIMESTAMP(FROM_UNIXTIME(((server_time IS
NOT NULL CASE CAST(server_time) CASE 0:BIGINT) / 1000)))) AS
event_time, (d ITEM _UTF-16LE'106') AS supply_id,
_UTF-16LE'd83':VARCHAR(4) CHARACTER SET "UTF-16LE" AS field_key, ((d
ITEM _UTF-16LE'83') IS NOT NULL CASE CAST((d ITEM _UTF-16LE'83')) CASE
_UTF-16LE'NULL':VARCHAR(2147483647) CHARACTER SET "UTF-16LE") AS
field_value]),

  Calc(select=[Reinterpret(TO_TIMESTAMP(FROM_UNIXTIME(((server_time IS
NOT NULL CASE CAST(server_time) CASE 0:BIGINT) / 1000)))) AS
event_time, (d ITEM _UTF-16LE'106') AS supply_id,
_UTF-16LE'd84':VARCHAR(4) CHARACTER SET "UTF-16LE" AS field_key, ((d
ITEM _UTF-16LE'84') IS NOT NULL CASE CAST((d ITEM _UTF-16LE'84')) CASE
_UTF-16LE'NULL':VARCHAR(2147483647) CHARACTER SET "UTF-16LE") AS
field_value]),

  Calc(select=[Reinterpret(TO_TIMESTAMP(FROM_UNIXTIME(((server_time IS
NOT NULL CASE CAST(server_time) CASE 0:BIGINT) / 1000)))) AS
event_time, (d ITEM _UTF-16LE'106') AS supply_id,
_UTF-16LE'd86':VARCHAR(4) CHARACTER SET "UTF-16LE" AS field_key, ((d
ITEM _UTF-16LE'86') IS NOT NULL CASE CAST((d ITEM _UTF-16LE'86')) CASE
_UTF-16LE'NULL':VARCHAR(214
7483647) CHARACTER SET "UTF-16LE") AS field_value])
 )


赵一旦 <[email protected]> 于2020年12月15日周二 下午10:50写道:

> 方案2没问题,方案3的window算子部分没有watermark。
>
> 赵一旦 <[email protected]> 于2020年12月15日周二 下午10:49写道:
>
>> 具体SQL如下。
>> 方案2:
>>
>>
>> INSERT INTO flink_sdk_stats
>> (
>>     SELECT
>>         DATE_FORMAT(TUMBLE_END(`event_time`, INTERVAL '5' MINUTE), 
>> 'yyyyMMddHHmm') AS `time`,
>>         sid                                                                  
>>       AS `supply_id`,
>>         'd77'                                                                
>>       AS `field_key`,
>>         d77                                                                  
>>       AS `filed_value`,
>>         count(1)                                                             
>>       AS `pv`
>>     FROM
>>         baidu_log_view
>>     GROUP BY
>>         sid,
>>         d77,
>>         TUMBLE(event_time, INTERVAL '5' MINUTE)
>>
>>     UNION ALL
>>
>>     SELECT
>>         DATE_FORMAT(TUMBLE_END(`event_time`, INTERVAL '5' MINUTE), 
>> 'yyyyMMddHHmm') AS `time`,
>>         sid                                                                  
>>       AS `supply_id`,
>>         'd79'                                                                
>>       AS `field_key`,
>>         d79                                                                  
>>       AS `filed_value`,
>>         count(1)                                                             
>>       AS `pv`
>>     FROM
>>         baidu_log_view
>>     GROUP BY
>>         sid,
>>         d79,
>>         TUMBLE(event_time, INTERVAL '5' MINUTE)
>>
>>     UNION ALL
>>
>>     SELECT
>>         DATE_FORMAT(TUMBLE_END(`event_time`, INTERVAL '5' MINUTE), 
>> 'yyyyMMddHHmm') AS `time`,
>>         sid                                                                  
>>       AS `supply_id`,
>>         'd80'                                                                
>>       AS `field_key`,
>>         d80                                                                  
>>       AS `filed_value`,
>>         count(1)                                                             
>>       AS `pv`
>>     FROM
>>         baidu_log_view
>>     GROUP BY
>>         sid,
>>         d80,
>>         TUMBLE(event_time, INTERVAL '5' MINUTE)
>>
>>     UNION ALL
>>
>>     SELECT
>>         DATE_FORMAT(TUMBLE_END(`event_time`, INTERVAL '5' MINUTE), 
>> 'yyyyMMddHHmm') AS `time`,
>>         sid                                                                  
>>       AS `supply_id`,
>>         'd81'                                                                
>>       AS `field_key`,
>>         d81                                                                  
>>       AS `filed_value`,
>>         count(1)                                                             
>>       AS `pv`
>>     FROM
>>         baidu_log_view
>>     GROUP BY
>>         sid,
>>         d81,
>>         TUMBLE(event_time, INTERVAL '5' MINUTE)
>>
>>     UNION ALL
>>
>>     SELECT
>>         DATE_FORMAT(TUMBLE_END(`event_time`, INTERVAL '5' MINUTE), 
>> 'yyyyMMddHHmm') AS `time`,
>>         sid                                                                  
>>       AS `supply_id`,
>>         'd83'                                                                
>>       AS `field_key`,
>>         d83                                                                  
>>       AS `filed_value`,
>>         count(1)                                                             
>>       AS `pv`
>>     FROM
>>         baidu_log_view
>>     GROUP BY
>>         sid,
>>         d83,
>>         TUMBLE(event_time, INTERVAL '5' MINUTE)
>>
>>     UNION ALL
>>
>>     SELECT
>>         DATE_FORMAT(TUMBLE_END(`event_time`, INTERVAL '5' MINUTE), 
>> 'yyyyMMddHHmm') AS `time`,
>>         sid                                                                  
>>       AS `supply_id`,
>>         'd84'                                                                
>>       AS `field_key`,
>>         d84                                                                  
>>       AS `filed_value`,
>>         count(1)                                                             
>>       AS `pv`
>>     FROM
>>         baidu_log_view
>>     GROUP BY
>>         sid,
>>         d84,
>>         TUMBLE(event_time, INTERVAL '5' MINUTE)
>>
>>     UNION ALL
>>
>>     SELECT
>>         DATE_FORMAT(TUMBLE_END(`event_time`, INTERVAL '5' MINUTE), 
>> 'yyyyMMddHHmm') AS `time`,
>>         sid                                                                  
>>       AS `supply_id`,
>>         'd86'                                                                
>>       AS `field_key`,
>>         d86                                                                  
>>       AS `field_value`,
>>         count(1)                                                             
>>       AS `pv`
>>     FROM
>>         baidu_log_view
>>     GROUP BY
>>         sid,
>>         d86,
>>         TUMBLE(event_time, INTERVAL '5' MINUTE)
>> );
>>
>>
>>
>> 方案3:
>>
>>
>> INSERT INTO flink_sdk_stats
>> SELECT
>>     DATE_FORMAT(TUMBLE_END(`event_time`, INTERVAL '5' MINUTE), 
>> 'yyyyMMddHHmm') AS `time`,
>>     `supply_id`,
>>     `field_key`,
>>     `field_value`,
>>     count(1) AS `pv`
>> FROM
>>     (
>>      SELECT event_time, sid AS `supply_id`, 'd107' AS `field_key`, d107 AS 
>> `field_value` FROM baidu_log_view
>>      UNION ALL
>>      SELECT event_time, sid AS `supply_id`, 'd77'  AS `field_key`, d77  AS 
>> `field_value` FROM baidu_log_view
>>      UNION ALL
>>      SELECT event_time, sid AS `supply_id`, 'd77'  AS `field_key`, d77  AS 
>> `field_value` FROM baidu_log_view
>>      UNION ALL
>>      SELECT event_time, sid AS `supply_id`, 'd79'  AS `field_key`, d79  AS 
>> `field_value` FROM baidu_log_view
>>      UNION ALL
>>      SELECT event_time, sid AS `supply_id`, 'd80'  AS `field_key`, d80  AS 
>> `field_value` FROM baidu_log_view
>>      UNION ALL
>>      SELECT event_time, sid AS `supply_id`, 'd81'  AS `field_key`, d81  AS 
>> `field_value` FROM baidu_log_view
>>      UNION ALL
>>      SELECT event_time, sid AS `supply_id`, 'd83'  AS `field_key`, d83  AS 
>> `field_value` FROM baidu_log_view
>>      UNION ALL
>>      SELECT event_time, sid AS `supply_id`, 'd84'  AS `field_key`, d84  AS 
>> `field_value` FROM baidu_log_view
>>      UNION ALL
>>      SELECT event_time, sid AS `supply_id`, 'd86'  AS `field_key`, d86  AS 
>> `field_value` FROM baidu_log_view
>> )
>> GROUP BY
>>     `supply_id`, `field_key`, `field_value`, TUMBLE(event_time, INTERVAL '5' 
>> MINUTE);
>>
>>
>> 赵一旦 <[email protected]> 于2020年12月15日周二 下午10:48写道:
>>
>>>
>>> 需要,针对某个表,按照key1(xxx+yyy+ky1),key2(xxx+yyy+ky2),....等多组key统计。其中xxx+yyy为共同字段。目前有如下3种实现我。
>>> (1)每组key分别统计,分别insert。
>>> (2)每组key分别统计,然后union结果,然后insert。
>>> (3)针对表多次select,然后union,然后再基于key统计,然后insert。
>>> 第三种方案中,会将ky1、ky2这几个不同的字段通过
>>>
>>> select 'ky1' as key_name, ky1 as key_value
>>> union
>>> select 'ky2' as key_name, ky2 as key_value
>>>
>>> 的方式统一为key这个字段,最后通过(xxx+yyy+key_name+key_value)的方式统计。
>>>
>>> 目前发现个问题,方案3中,window结点一直没有watermark,导致不发生计算。
>>>
>>>
>>>
>>>

回复