Flink1.10的集群,用hdfs做backend

无论从flink最早的版本到flink 1.12都存在的一些文档和样例的不完整,或者说相同的代码,因输入源不同导致的结果差异。

比如说下面链接中的样例
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/operators/process_function.html

如果输入源分别为

1.     一次性从内存中的List读取数据

2.     一次性从文件目录读取读取数据

3.     持续从文件目录读取数据

4.     从socket流持续读取文件

上面的4者,只有3和4,对于KeyedStream的process(…)中使用ValueState<T>在处理onTimer函数时才会被触发调用,对于1和2是不会的。

相信其他的算子也存在类似的问题

具体代码如下:
```java

package com.xxx.data.stream;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.state.StateTtlConfig;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.common.time.Time;
import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.io.TextInputFormat;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.AssignerWithPeriodicWatermarks;
import 
org.apache.flink.streaming.api.functions.AssignerWithPunctuatedWatermarks;
import org.apache.flink.streaming.api.functions.IngestionTimeExtractor;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.streaming.api.functions.source.FileProcessingMode;
import org.apache.flink.streaming.api.watermark.Watermark;
import 
org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import 
org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.util.Collector;

import javax.annotation.Nullable;
import java.text.SimpleDateFormat;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;

public class KeyedStreamJob {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = 
StreamExecutionEnvironment.getExecutionEnvironment();
        env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);
        env.setParallelism(4);

        //1.从内存获取数据
        Tuple2<String, Integer> item = null;
        List<Tuple2<String, Integer>> items = new ArrayList<>();
        item = new Tuple2<>("k1", 1);
        items.add(item);
        item = new Tuple2<>("k3", 3);
        items.add(item);
        item = new Tuple2<>("k1", 10);
        items.add(item);
        item = new Tuple2<>("k2", 2);
        items.add(item);
        item = new Tuple2<>("k1", 100);
        items.add(item);
        item = new Tuple2<>("k2", 20);
        items.add(item);
        DataStreamSource<Tuple2<String, Integer>> streamSource = 
env.fromCollection(items);
        SingleOutputStreamOperator<Tuple2<String, Integer>> listStream = 
streamSource.assignTimestampsAndWatermarks(new 
AssignerWithPeriodicWatermarks<Tuple2<String, Integer>>() {
            @Nullable
            @Override
            public Watermark getCurrentWatermark() {
                return null;
            }

            @Override
            public long extractTimestamp(Tuple2<String, Integer> element, long 
previousElementTimestamp) {
                System.out.println("---");
                return System.currentTimeMillis();
            }
        });

        //2.从文件夹一次性获取数据
        SingleOutputStreamOperator<Tuple2<String, Integer>> fileStream = 
env.readTextFile("D:\\data", "UTF-8").map(new MapFunction<String, 
Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String value) throws Exception {
                return new Tuple2<>(value, 1);
            }
        })
                .assignTimestampsAndWatermarks(new 
AssignerWithPeriodicWatermarks<Tuple2<String, Integer>>() {
                    @Nullable
                    @Override
                    public Watermark getCurrentWatermark() {
                        return null;
                    }

                    @Override
                    public long extractTimestamp(Tuple2<String, Integer> 
element, long previousElementTimestamp) {
                        return System.currentTimeMillis();
                    }
                });

        //3.从文件夹持续获取数据
        TypeInformation<String> typeInformation = 
BasicTypeInfo.STRING_TYPE_INFO;
        TextInputFormat format = new TextInputFormat(new Path("D:\\data"));
        format.setCharsetName("UTF-8");
        //是否支持递归
        format.setNestedFileEnumeration(true);
        SingleOutputStreamOperator<Tuple2<String, Integer>> continuefileStream 
= env.readFile(format, "D:\\data", FileProcessingMode.PROCESS_CONTINUOUSLY, 
6000L, typeInformation).map(new MapFunction<String, Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String value) throws Exception {
                return new Tuple2<>(value, 1);
            }
        })
                .assignTimestampsAndWatermarks(new 
AssignerWithPeriodicWatermarks<Tuple2<String, Integer>>() {
                    @Nullable
                    @Override
                    public Watermark getCurrentWatermark() {
                        return null;
                    }

                    @Override
                    public long extractTimestamp(Tuple2<String, Integer> 
element, long previousElementTimestamp) {
                        return System.currentTimeMillis();
                    }
                });

        //4.从socket中持续获取数据
        SingleOutputStreamOperator<Tuple2<String, Integer>> socketStream = 
env.socketTextStream("localhost", 9999).map(new MapFunction<String, 
Tuple2<String, Integer>>() {
            @Override
            public Tuple2<String, Integer> map(String value) throws Exception {
                return new Tuple2<>(value, 1);
            }
        })
                .assignTimestampsAndWatermarks(new 
AssignerWithPeriodicWatermarks<Tuple2<String, Integer>>() {
            @Nullable
            @Override
            public Watermark getCurrentWatermark() {
                return null;
            }

            @Override
            public long extractTimestamp(Tuple2<String, Integer> element, long 
previousElementTimestamp) {
                return System.currentTimeMillis();
            }
        });

        //分别从1. 2. 3. 4. 测试数据的ValueState的超时触发,发现
        //只有3.continuefileStream 4.socketStream 这些持续获取数据的可以触发onTimer
        //至于1.listStream         2.fileStream   这些一次性获取书的不会触发onTimer
        SingleOutputStreamOperator<Tuple2<String, Long>> sum =  
continuefileStream  // listStream fileStream socketStream
                .keyBy(0)
                .process(new KeyedProcessFunction<Tuple, Tuple2<String, 
Integer>, Tuple2<String, Long>>() {
                    private ValueState<SumWithTimeStamp> sum;
                    private final SimpleDateFormat yyyyMMddHHmmss = new 
SimpleDateFormat("yyyy-MM-dd:HH-mm-ss.SSS");

                    @Override
                    public void open(Configuration parameters) throws Exception 
{
                        super.open(parameters);
                        StateTtlConfig stateTtlConfig = 
StateTtlConfig.newBuilder(Time.seconds(1L)).returnExpiredIfNotCleanedUp().updateTtlOnReadAndWrite().useProcessingTime().build();
                        ValueStateDescriptor<SumWithTimeStamp> 
valueStateDescriptor = new ValueStateDescriptor<SumWithTimeStamp>("sum", 
SumWithTimeStamp.class);
//                        valueStateDescriptor.enableTimeToLive(stateTtlConfig);

                        sum = 
getRuntimeContext().getState(valueStateDescriptor);
                    }

                    @Override
                    public void processElement(Tuple2<String, Integer> item, 
Context ctx, Collector<Tuple2<String, Long>> out) throws Exception {
                        SumWithTimeStamp sumValue = sum.value();
                        if (sumValue == null) {
                            sumValue = new SumWithTimeStamp();
                            sumValue.key = item.f0;
//                            Thread.sleep(1500L);
//                            Date cur = new Date();
//                            cur.setTime(ctx.timestamp());
//                            System.out.println("ini " + 
ctx.getCurrentKey().toString()  + yyyyMMddHHmmss.format(cur));
                           sumValue.sum += item.f1.longValue();
                            sumValue.lastModified = ctx.timestamp();
                            sum.update(sumValue);
                            
ctx.timerService().registerProcessingTimeTimer(sumValue.lastModified + 3*1000);
                            System.out.println("ini " + 
ctx.getCurrentKey().toString() + " item:" + item.toString() + " sum:" + 
sum.value().sum);
                        } else {
                            sumValue.sum += item.f1.longValue();
                            sumValue.lastModified = ctx.timestamp();
                            sum.update(sumValue);
//                            
ctx.timerService().registerProcessingTimeTimer(sumValue.lastModified + 5*1000);
                            System.out.println("up " + 
ctx.getCurrentKey().toString() + " item:" + item.toString() + " sum:" + 
sum.value().sum);
                        }
//                            Date cur = new Date();
//                            cur.setTime(ctx.timestamp());
//                            System.out.println("up " + 
ctx.getCurrentKey().toString()  + yyyyMMddHHmmss.format(cur));
//                            Thread.sleep(1500L);

                    }

                    @Override
                   public void onTimer(long timestamp, OnTimerContext ctx, 
Collector<Tuple2<String, Long>> out) throws Exception {
//                        super.onTimer(timestamp, ctx, out);
                        System.out.println("-------" + 
ctx.getCurrentKey().toString());
                        if (timestamp <= sum.value().lastModified + 5000) {
                            out.collect(new Tuple2<String, 
Long>(sum.value().key, sum.value().sum));
//                            sum.clear();
                        }
                    }
                });

        sum.print();

        //continueSum(streamSource);
        env.execute("keyedSteamJob");
//        System.in.read();
    }

    public static void continueSum(DataStreamSource<Tuple2<String, Integer>> 
streamSource) {
        streamSource
                //by 1
                //.assignTimestampsAndWatermarks(new IngestionTimeExtractor())
                .keyBy(new KeySelector<Tuple2<String, Integer>, String>() {
                    @Override
                    public String getKey(Tuple2<String, Integer> value) throws 
Exception {
                        return value.f0;
                    }
                })
//                .window(TumblingEventTimeWindows.of(Time.milliseconds(10L)))
                .sum(1)
                .print("+++++++++++++++++++++++++++");

    }

    public static class SumWithTimeStamp {
        public String key;
        public long sum;
        public long lastModified;
    }
}


```
发送自 Windows 10 版邮件<https://go.microsoft.com/fwlink/?LinkId=550986>应用

回复