我不太懂,下游的isolation.level是不是read_committed是啥意思。
我是把topic A中的partitionId和offset写到消息体中,然后flink程序,把消息写到下游的topic B中。将topic
B实时写到hive上,然后在hive表中,根据partitionId和offset去重,发现有重复消费了

东东 <dongdongking...@163.com> 于2021年8月2日周一 下午6:20写道:

> 下游如何发现重复数据的,下游的isolation.level是不是read_committed
>
>
> 在 2021-08-02 18:14:27,"Jim Chen" <chenshuai19950...@gmail.com> 写道:
> >Hi 刘建刚,
> >我使用了stop with savepoint,但是还是发现,下游有重复数据。
> >停止命令:
> >/home/datadev/flink-1.12.2/flink-1.12.2/bin/flink stop \
> >-yid application_1625497885855_703064 \
> >-p
>
> >hdfs://ztcluster/flink_realtime_warehouse/checkpoint/UserClickLogAll/savepoint
> >\
> >-d 55e7ebb6fa38faaba61b4b9a7cd89827
> >
> >重启命令:
> >/home/datadev/flink-1.12.2/flink-1.12.2/bin/flink run \
> >-m yarn-cluster \
> >-yjm 4096 -ytm 4096 \
> >-ynm User_Click_Log_Split_All \
> >-yqu syh_offline \
> >-ys 2 \
> >-d \
> >-p 64 \
> >-s
>
> >hdfs://ztcluster/flink_realtime_warehouse/checkpoint/UserClickLogAll/savepoint/savepoint-55e7eb-11203031f2a5
> >\
> >-n \
> >-c com.datacenter.etl.ods.common.mobile.UserClickLogAll \
>
> >/opt/case/app/realtime/v1.0/batch/buryingpoint/paiping/all/realtime_etl-1.0-SNAPSHOT.jar
> >
> >
> >刘建刚 <liujiangangp...@gmail.com> 于2021年8月2日周一 下午3:49写道:
> >
> >> cancel with savepoint是之前的接口了,会造成kafka数据的重复。新的stop with
> >> savepoint则会在做savepoint的时候,不再发送数据,从而避免了重复数据,哭啼可以参考
> >>
> >>
> https://ci.apache.org/projects/flink/flink-docs-master/docs/ops/state/savepoints/
> >>
> >> Jim Chen <chenshuai19950...@gmail.com> 于2021年8月2日周一 下午2:33写道:
> >>
> >> > 我是通过savepoint的方式重启的,命令如下:
> >> >
> >> > cancel command:
> >> >
> >> > /home/datadev/flink-1.12.2/flink-1.12.2/bin/flink cancel \
> >> > -yid application_1625497885855_698371 \
> >> > -s
> >> >
> >> >
> >>
> hdfs://ztcluster/flink_realtime_warehouse/checkpoint/UserClickLogAll/savepoint
> >> > \
> >> > 59cf6ccc83aa163bd1e0cd3304dfe06a
> >> >
> >> > print savepoint:
> >> >
> >> >
> >> >
> >>
> hdfs://ztcluster/flink_realtime_warehouse/checkpoint/UserClickLogAll/savepoint/savepoint-59cf6c-f82cb4317494
> >> >
> >> >
> >> > restart command:
> >> >
> >> > /home/datadev/flink-1.12.2/flink-1.12.2/bin/flink run \
> >> > -m yarn-cluster \
> >> > -yjm 4096 -ytm 4096 \
> >> > -ynm User_Click_Log_Split_All \
> >> > -yqu syh_offline \
> >> > -ys 2 \
> >> > -d \
> >> > -p 64 \
> >> > -s
> >> >
> >> >
> >>
> hdfs://ztcluster/flink_realtime_warehouse/checkpoint/UserClickLogAll/savepoint/savepoint-59cf6c-f82cb4317494
> >> > \
> >> > -n \
> >> > -c com.datacenter.etl.ods.common.mobile.UserClickLogAll \
> >> >
> >> >
> >>
> /opt/case/app/realtime/v1.0/batch/buryingpoint/paiping/all/realtime_etl-1.0-SNAPSHOT.jar
> >> >
> >> > Jim Chen <chenshuai19950...@gmail.com> 于2021年8月2日周一 下午2:01写道:
> >> >
> >> > > 大家好,我有一个flink job, 消费kafka topic A, 然后写到kafka  topic B.
> >> > > 当我通过savepoint的方式,重启任务之后,发现topic B中有重复消费的数据。有人可以帮我解答一下吗?谢谢!
> >> > >
> >> > > My Versions
> >> > > Flink 1.12.4
> >> > > Kafka 2.0.1
> >> > > Java 1.8
> >> > >
> >> > > Core code:
> >> > >
> >> > > env.enableCheckpointing(300000);
> >> > >
> >> > >
> >> >
> >>
> env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
> >> > >
> >> > >
> >> >
> >>
> env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
> >> > >
> >> > > DataStream dataDS = env.addSource(kafkaConsumer).map(xxx);
> >> > >
> >> > > tableEnv.createTemporaryView("data_table",dataDS);
> >> > > String sql = "select * from data_table a inner join
> >> > > hive_catalog.dim.dim.project for system_time as of a.proctime as b
> on
> >> > a.id
> >> > > = b.id"
> >> > > Table table = tableEnv.sqlQuery(sql);
> >> > > DataStream resultDS = tableEnv.toAppendStream(table,
> >> Row.class).map(xx);
> >> > >
> >> > > // Kafka producer parameter
> >> > > Properties producerProps = new Properties();
> >> > > producerProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,
> >> > > bootstrapServers);
> >> > > producerProps.put(ProducerConfig.ACKS_CONFIG, "all");
> >> > > producerProps.put(ProducerConfig.BUFFER_MEMORY_CONFIG,
> >> > kafkaBufferMemory);
> >> > > producerProps.put(ProducerConfig.BATCH_SIZE_CONFIG, kafkaBatchSize);
> >> > > producerProps.put(ProducerConfig.LINGER_MS_CONFIG, kafkaLingerMs);
> >> > > producerProps.put(ProducerConfig.TRANSACTION_TIMEOUT_CONFIG,
> 300000);
> >> > >
> producerProps.put(ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION,
> >> > > "1");
> >> > > producerProps.put(ProducerConfig.RETRIES_CONFIG, "5");
> >> > > producerProps.put(ProducerConfig.ENABLE_IDEMPOTENCE_CONFIG, "true");
> >> > > producerProps.put(ProducerConfig.COMPRESSION_TYPE_CONFIG, "lz4");
> >> > >
> >> > > resultDS.addSink(new FlinkKafkaProducer<JSONObject>(sinkTopic, new
> >> > > JSONSchema(), producerProps, new FlinkFixedPartitioner<>(),
> >> > > FlinkKafkaProducer.Semantic.EXACTLY_ONCE, 5))
> >> > >                 .setParallelism(sinkParallelism);
> >> > >
> >> >
> >>
>

回复