我不太懂,下游的isolation.level是不是read_committed是啥意思。 我是把topic A中的partitionId和offset写到消息体中,然后flink程序,把消息写到下游的topic B中。将topic B实时写到hive上,然后在hive表中,根据partitionId和offset去重,发现有重复消费了
东东 <dongdongking...@163.com> 于2021年8月2日周一 下午6:20写道: > 下游如何发现重复数据的,下游的isolation.level是不是read_committed > > > 在 2021-08-02 18:14:27,"Jim Chen" <chenshuai19950...@gmail.com> 写道: > >Hi 刘建刚, > >我使用了stop with savepoint,但是还是发现,下游有重复数据。 > >停止命令: > >/home/datadev/flink-1.12.2/flink-1.12.2/bin/flink stop \ > >-yid application_1625497885855_703064 \ > >-p > > >hdfs://ztcluster/flink_realtime_warehouse/checkpoint/UserClickLogAll/savepoint > >\ > >-d 55e7ebb6fa38faaba61b4b9a7cd89827 > > > >重启命令: > >/home/datadev/flink-1.12.2/flink-1.12.2/bin/flink run \ > >-m yarn-cluster \ > >-yjm 4096 -ytm 4096 \ > >-ynm User_Click_Log_Split_All \ > >-yqu syh_offline \ > >-ys 2 \ > >-d \ > >-p 64 \ > >-s > > >hdfs://ztcluster/flink_realtime_warehouse/checkpoint/UserClickLogAll/savepoint/savepoint-55e7eb-11203031f2a5 > >\ > >-n \ > >-c com.datacenter.etl.ods.common.mobile.UserClickLogAll \ > > >/opt/case/app/realtime/v1.0/batch/buryingpoint/paiping/all/realtime_etl-1.0-SNAPSHOT.jar > > > > > >刘建刚 <liujiangangp...@gmail.com> 于2021年8月2日周一 下午3:49写道: > > > >> cancel with savepoint是之前的接口了,会造成kafka数据的重复。新的stop with > >> savepoint则会在做savepoint的时候,不再发送数据,从而避免了重复数据,哭啼可以参考 > >> > >> > https://ci.apache.org/projects/flink/flink-docs-master/docs/ops/state/savepoints/ > >> > >> Jim Chen <chenshuai19950...@gmail.com> 于2021年8月2日周一 下午2:33写道: > >> > >> > 我是通过savepoint的方式重启的,命令如下: > >> > > >> > cancel command: > >> > > >> > /home/datadev/flink-1.12.2/flink-1.12.2/bin/flink cancel \ > >> > -yid application_1625497885855_698371 \ > >> > -s > >> > > >> > > >> > hdfs://ztcluster/flink_realtime_warehouse/checkpoint/UserClickLogAll/savepoint > >> > \ > >> > 59cf6ccc83aa163bd1e0cd3304dfe06a > >> > > >> > print savepoint: > >> > > >> > > >> > > >> > hdfs://ztcluster/flink_realtime_warehouse/checkpoint/UserClickLogAll/savepoint/savepoint-59cf6c-f82cb4317494 > >> > > >> > > >> > restart command: > >> > > >> > /home/datadev/flink-1.12.2/flink-1.12.2/bin/flink run \ > >> > -m yarn-cluster \ > >> > -yjm 4096 -ytm 4096 \ > >> > -ynm User_Click_Log_Split_All \ > >> > -yqu syh_offline \ > >> > -ys 2 \ > >> > -d \ > >> > -p 64 \ > >> > -s > >> > > >> > > >> > hdfs://ztcluster/flink_realtime_warehouse/checkpoint/UserClickLogAll/savepoint/savepoint-59cf6c-f82cb4317494 > >> > \ > >> > -n \ > >> > -c com.datacenter.etl.ods.common.mobile.UserClickLogAll \ > >> > > >> > > >> > /opt/case/app/realtime/v1.0/batch/buryingpoint/paiping/all/realtime_etl-1.0-SNAPSHOT.jar > >> > > >> > Jim Chen <chenshuai19950...@gmail.com> 于2021年8月2日周一 下午2:01写道: > >> > > >> > > 大家好,我有一个flink job, 消费kafka topic A, 然后写到kafka topic B. > >> > > 当我通过savepoint的方式,重启任务之后,发现topic B中有重复消费的数据。有人可以帮我解答一下吗?谢谢! > >> > > > >> > > My Versions > >> > > Flink 1.12.4 > >> > > Kafka 2.0.1 > >> > > Java 1.8 > >> > > > >> > > Core code: > >> > > > >> > > env.enableCheckpointing(300000); > >> > > > >> > > > >> > > >> > env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION); > >> > > > >> > > > >> > > >> > env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE); > >> > > > >> > > DataStream dataDS = env.addSource(kafkaConsumer).map(xxx); > >> > > > >> > > tableEnv.createTemporaryView("data_table",dataDS); > >> > > String sql = "select * from data_table a inner join > >> > > hive_catalog.dim.dim.project for system_time as of a.proctime as b > on > >> > a.id > >> > > = b.id" > >> > > Table table = tableEnv.sqlQuery(sql); > >> > > DataStream resultDS = tableEnv.toAppendStream(table, > >> Row.class).map(xx); > >> > > > >> > > // Kafka producer parameter > >> > > Properties producerProps = new Properties(); > >> > > producerProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, > >> > > bootstrapServers); > >> > > producerProps.put(ProducerConfig.ACKS_CONFIG, "all"); > >> > > producerProps.put(ProducerConfig.BUFFER_MEMORY_CONFIG, > >> > kafkaBufferMemory); > >> > > producerProps.put(ProducerConfig.BATCH_SIZE_CONFIG, kafkaBatchSize); > >> > > producerProps.put(ProducerConfig.LINGER_MS_CONFIG, kafkaLingerMs); > >> > > producerProps.put(ProducerConfig.TRANSACTION_TIMEOUT_CONFIG, > 300000); > >> > > > producerProps.put(ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION, > >> > > "1"); > >> > > producerProps.put(ProducerConfig.RETRIES_CONFIG, "5"); > >> > > producerProps.put(ProducerConfig.ENABLE_IDEMPOTENCE_CONFIG, "true"); > >> > > producerProps.put(ProducerConfig.COMPRESSION_TYPE_CONFIG, "lz4"); > >> > > > >> > > resultDS.addSink(new FlinkKafkaProducer<JSONObject>(sinkTopic, new > >> > > JSONSchema(), producerProps, new FlinkFixedPartitioner<>(), > >> > > FlinkKafkaProducer.Semantic.EXACTLY_ONCE, 5)) > >> > > .setParallelism(sinkParallelism); > >> > > > >> > > >> >