Hi, datastream的这个interval join的api应该对标的是sql中的interval 
join。但是你目前写的这个sql,是普通join。普通join和interval join在业务含义和实现上都是有区别的。所以你直接拿datastream 
api的interval join和sql上的普通join结果对比,其实是有问题的。所以我之前的建议是让你试下让sql也使用interval 
join,这样双方才有可比性。


另外sql中设置的table.exec.state.ttl这个参数,只是代表的state会20s清空过期数据,但我看你要比较的时间窗口是-10s和20s,貌似也不大一样。




--

    Best!
    Xuyang





在 2022-06-10 14:33:37,"lxk" <lxk7...@163.com> 写道:
>
>
>
>我不理解的点在于,我interval join开的时间窗口比我sql中设置的状态时间都要长,窗口的上下界别是-10s 和 20s,为什么会丢数据?
>
>sql中我设置这个table.exec.state.ttl参数 
>为20s,照理来说两个流应该也是保留20s的数据在状态中进行join。不知道我的理解是否有问题,希望能够得到解答。
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>在 2022-06-10 14:15:29,"Xuyang" <xyzhong...@163.com> 写道:
>>Hi, 你的这条SQL 并不是interval join,是普通join。
>>interval join的使用文档可以参考文档[1]。可以试下使用SQL interval 
>>join会不会丢数据(注意设置state的ttl),从而判断是数据的问题还是datastream api的问题。
>>
>>
>>
>>
>>[1] 
>>https://nightlies.apache.org/flink/flink-docs-master/docs/dev/table/sql/queries/joins/#interval-joins
>>
>>
>>
>>
>>
>>
>>
>>--
>>
>>    Best!
>>    Xuyang
>>
>>
>>
>>
>>
>>在 2022-06-10 11:26:33,"lxk" <lxk7...@163.com> 写道:
>>>我用的是以下代码:
>>>String s = streamTableEnvironment.explainSql("select header.customer_id" +
>>>",item.goods_id" +
>>>",header.id" +
>>>",header.order_status" +
>>>",header.shop_id" +
>>>",header.parent_order_id" +
>>>",header.order_at" +
>>>",header.pay_at" +
>>>",header.channel_id" +
>>>",header.root_order_id" +
>>>",item.id" +
>>>",item.row_num" +
>>>",item.p_sp_sub_amt" +
>>>",item.display_qty" +
>>>",item.qty" +
>>>",item.bom_type" +
>>>" from header JOIN item on header.id = item.order_id");
>>>
>>>System.out.println("explain:" + s);
>>>
>>>
>>>
>>>
>>>plan信息为:
>>>explain:== Abstract Syntax Tree ==
>>>LogicalProject(customer_id=[$2], goods_id=[$15], id=[$0], order_status=[$1], 
>>>shop_id=[$3], parent_order_id=[$4], order_at=[$5], pay_at=[$6], 
>>>channel_id=[$7], root_order_id=[$8], id0=[$12], row_num=[$14], 
>>>p_sp_sub_amt=[$19], display_qty=[$22], qty=[$17], bom_type=[$20])
>>>+- LogicalJoin(condition=[=($0, $13)], joinType=[inner])
>>>   :- LogicalTableScan(table=[[default_catalog, default_database, 
>>> Unregistered_DataStream_Source_5]])
>>>   +- LogicalTableScan(table=[[default_catalog, default_database, 
>>> Unregistered_DataStream_Source_8]])
>>>
>>>
>>>== Optimized Physical Plan ==
>>>Calc(select=[customer_id, goods_id, id, order_status, shop_id, 
>>>parent_order_id, order_at, pay_at, channel_id, root_order_id, id0, row_num, 
>>>p_sp_sub_amt, display_qty, qty, bom_type])
>>>+- Join(joinType=[InnerJoin], where=[=(id, order_id)], select=[id, 
>>>order_status, customer_id, shop_id, parent_order_id, order_at, pay_at, 
>>>channel_id, root_order_id, id0, order_id, row_num, goods_id, qty, 
>>>p_sp_sub_amt, bom_type, display_qty], leftInputSpec=[NoUniqueKey], 
>>>rightInputSpec=[NoUniqueKey])
>>>   :- Exchange(distribution=[hash[id]])
>>>   :  +- Calc(select=[id, order_status, customer_id, shop_id, 
>>> parent_order_id, order_at, pay_at, channel_id, root_order_id])
>>>   :     +- TableSourceScan(table=[[default_catalog, default_database, 
>>> Unregistered_DataStream_Source_5]], fields=[id, order_status, customer_id, 
>>> shop_id, parent_order_id, order_at, pay_at, channel_id, root_order_id, 
>>> last_updated_at, business_flag, mysql_op_type])
>>>   +- Exchange(distribution=[hash[order_id]])
>>>      +- Calc(select=[id, order_id, row_num, goods_id, qty, p_sp_sub_amt, 
>>> bom_type, display_qty])
>>>         +- TableSourceScan(table=[[default_catalog, default_database, 
>>> Unregistered_DataStream_Source_8]], fields=[id, order_id, row_num, 
>>> goods_id, s_sku_code, qty, p_paid_sub_amt, p_sp_sub_amt, bom_type, 
>>> last_updated_at, display_qty, is_first_flag])
>>>
>>>
>>>== Optimized Execution Plan ==
>>>Calc(select=[customer_id, goods_id, id, order_status, shop_id, 
>>>parent_order_id, order_at, pay_at, channel_id, root_order_id, id0, row_num, 
>>>p_sp_sub_amt, display_qty, qty, bom_type])
>>>+- Join(joinType=[InnerJoin], where=[(id = order_id)], select=[id, 
>>>order_status, customer_id, shop_id, parent_order_id, order_at, pay_at, 
>>>channel_id, root_order_id, id0, order_id, row_num, goods_id, qty, 
>>>p_sp_sub_amt, bom_type, display_qty], leftInputSpec=[NoUniqueKey], 
>>>rightInputSpec=[NoUniqueKey])
>>>   :- Exchange(distribution=[hash[id]])
>>>   :  +- Calc(select=[id, order_status, customer_id, shop_id, 
>>> parent_order_id, order_at, pay_at, channel_id, root_order_id])
>>>   :     +- TableSourceScan(table=[[default_catalog, default_database, 
>>> Unregistered_DataStream_Source_5]], fields=[id, order_status, customer_id, 
>>> shop_id, parent_order_id, order_at, pay_at, channel_id, root_order_id, 
>>> last_updated_at, business_flag, mysql_op_type])
>>>   +- Exchange(distribution=[hash[order_id]])
>>>      +- Calc(select=[id, order_id, row_num, goods_id, qty, p_sp_sub_amt, 
>>> bom_type, display_qty])
>>>         +- TableSourceScan(table=[[default_catalog, default_database, 
>>> Unregistered_DataStream_Source_8]], fields=[id, order_id, row_num, 
>>> goods_id, s_sku_code, qty, p_paid_sub_amt, p_sp_sub_amt, bom_type, 
>>> last_updated_at, display_qty, is_first_flag])
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>在 2022-06-10 11:02:56,"Shengkai Fang" <fskm...@gmail.com> 写道:
>>>>你好,能提供下具体的 plan 供大家查看下吗?
>>>>
>>>>你可以直接 使用 tEnv.executeSql("Explain JSON_EXECUTION_PLAN
>>>><YOUR_QUERY>").print() 打印下相关的信息。
>>>>
>>>>Best,
>>>>Shengkai
>>>>
>>>>lxk <lxk7...@163.com> 于2022年6月10日周五 10:29写道:
>>>>
>>>>> flink 版本:1.14.4
>>>>> 目前在使用flink interval join进行数据关联,在测试的时候发现一个问题,就是使用interval
>>>>> join完之后数据会丢失,但是使用sql api,直接进行join,数据是正常的,没有丢失。
>>>>> 水印是直接使用kafka 自带的时间戳生成watermark
>>>>>
>>>>>
>>>>> 以下是代码 ---interval join
>>>>>
>>>>> SingleOutputStreamOperator<HeaderFull> headerFullStream =
>>>>> headerFilterStream.keyBy(data -> data.getId())
>>>>> .intervalJoin(filterItemStream.keyBy(data -> data.getOrder_id()))
>>>>> .between(Time.seconds(-10), Time.seconds(20))
>>>>> .process(new ProcessJoinFunction<OrderHeader, OrderItem, HeaderFull>() {
>>>>> @Override
>>>>> public void processElement(OrderHeader left, OrderItem right, Context
>>>>> context, Collector<HeaderFull> collector) throws Exception {
>>>>> HeaderFull headerFull = new HeaderFull();
>>>>> BeanUtilsBean beanUtilsBean = new BeanUtilsBean();
>>>>> beanUtilsBean.copyProperties(headerFull, left);
>>>>> beanUtilsBean.copyProperties(headerFull, right);
>>>>> String event_date = left.getOrder_at().substring(0, 10);
>>>>> headerFull.setEvent_date(event_date);
>>>>> headerFull.setItem_id(right.getId());
>>>>> collector.collect(headerFull);
>>>>> }
>>>>>         }
>>>>> 使用sql 进行join
>>>>> Configuration conf = new Configuration();
>>>>> conf.setString("table.exec.mini-batch.enabled","true");
>>>>> conf.setString("table.exec.mini-batch.allow-latency","15 s");
>>>>> conf.setString("table.exec.mini-batch.size","100");
>>>>> conf.setString("table.exec.state.ttl","20 s");
>>>>> env.configure(conf);
>>>>> Table headerTable =
>>>>> streamTableEnvironment.fromDataStream(headerFilterStream);
>>>>> Table itemTable = streamTableEnvironment.fromDataStream(filterItemStream);
>>>>>
>>>>>
>>>>> streamTableEnvironment.createTemporaryView("header",headerTable);
>>>>> streamTableEnvironment.createTemporaryView("item",itemTable);
>>>>>
>>>>> Table result = streamTableEnvironment.sqlQuery("select header.customer_id"
>>>>> +
>>>>> ",item.goods_id" +
>>>>> ",header.id" +
>>>>> ",header.order_status" +
>>>>> ",header.shop_id" +
>>>>> ",header.parent_order_id" +
>>>>> ",header.order_at" +
>>>>> ",header.pay_at" +
>>>>> ",header.channel_id" +
>>>>> ",header.root_order_id" +
>>>>> ",item.id" +
>>>>> ",item.row_num" +
>>>>> ",item.p_sp_sub_amt" +
>>>>> ",item.display_qty" +
>>>>> ",item.qty" +
>>>>> ",item.bom_type" +
>>>>> " from header JOIN item on header.id = item.order_id");
>>>>>
>>>>>
>>>>> DataStream<Row> rowDataStream =
>>>>> streamTableEnvironment.toChangelogStream(result);
>>>>> 不太理解为什么使用interval join会丢这么多数据,按照我的理解使用sql join,底层应该也是用的类似interval
>>>>> join,为啥两者最终关联上的结果差异这么大。
>>>>>
>>>>>
>>>>>
>>>>>
>>>>>
>>>>>
>>>>>
>>>>>
>>>>>
>>>>>
>>>>>

回复