你可以测试不写入clickhouse是否还存在反压,如果不是因为写入瓶颈的话就从你的处理逻辑优化了
发件人: lxk 发送时间: 2023年1月31日 15:16 收件人: user-zh@flink.apache.org 主题: Flink SQL 如何优化以及处理反压 Flink版本:1.16.0 目前在使用Flink SQL进行多流关联,并写入Clickhouse中 具体代码如下: select \ header.id as id, \ LAST_VALUE(header.order_status), \ LAST_VALUE(header.customer_id), \ LAST_VALUE(header.shop_id), \ LAST_VALUE(header.parent_order_id), \ LAST_VALUE(header.order_at), \ LAST_VALUE(header.pay_at), \ LAST_VALUE(header.channel_id), \ LAST_VALUE(header.root_order_id), \ LAST_VALUE(header.last_updated_at), \ item.id as item_id, \ LAST_VALUE(item.order_id) as order_id, \ LAST_VALUE(item.row_num), \ LAST_VALUE(item.goods_id), \ LAST_VALUE(item.s_sku_code), \ LAST_VALUE(item.qty), \ LAST_VALUE(item.p_paid_sub_amt), \ LAST_VALUE(item.p_sp_sub_amt), \ LAST_VALUE(item.bom_type), \ LAST_VALUE(item.last_updated_at) as item_last_updated_at, \ LAST_VALUE(item.display_qty), \ LAST_VALUE(delivery.del_type), \ LAST_VALUE(delivery.time_slot_type), \ LAST_VALUE(delivery.time_slot_date), \ LAST_VALUE(delivery.time_slot_time_from), \ LAST_VALUE(delivery.time_slot_time_to), \ LAST_VALUE(delivery.sku_delivery_type), \ LAST_VALUE(delivery.last_updated_at) as del_last_updated_at, \ LAST_VALUE(promotion.id) as promo_id, \ LAST_VALUE(promotion.order_item_id), \ LAST_VALUE(promotion.p_promo_amt), \ LAST_VALUE(promotion.promotion_category), \ LAST_VALUE(promotion.promo_type), \ LAST_VALUE(promotion.promo_sub_type), \ LAST_VALUE(promotion.last_updated_at) as promo_last_updated_at, \ LAST_VALUE(promotion.promotion_cost) \ from \ item \ join \ header \ on item.order_id = header.id \ left join \ delivery \ on item.order_id = delivery.order_id \ left join \ promotion \ on item.id =promotion.order_item_id \ group by header.id,item.id 在Flink WEB UI 上发现程序反压很严重,而且时不时挂掉: https://pic.imgdb.cn/item/63d8bebbface21e9ef3c92fe.jpg 参考了京东的一篇文章https://flink-learning.org.cn/article/detail/1e86b8b38faaeefd5ed7f70858aa40bc ,对相关参数做了调整,但是发现有些功能在Flink 1.16中已经做了相关优化了,同时加了这些参数之后对程序没有起到任何优化的作用。 conf.setString("table.exec.mini-batch.enabled", "true"); conf.setString("table.exec.mini-batch.allow-latency", "15 s"); conf.setString("table.exec.mini-batch.size", "5000"); conf.setString("table.exec.state.ttl", "86400 s"); conf.setString("table.exec.disabled-operators", "NestedLoopJoin"); conf.setString("table.optimizer.join.broadcast-threshold", "-1"); conf.setString("table.optimizer.multiple-input-enabled", "true"); conf.setString("table.exec.shuffle-mode", "POINTWISE_EDGES_PIPELINED"); conf.setString("taskmanager.network.sort-shuffle.min-parallelism", "8"); 想请教下,针对Flink SQL如何处理反压,同时有什么其他的优化手段?