当前配置  hbase是从官网下载的 2.4.16,  其中hbase-site.xml 配置如下
<configuration>
  <property>
    <name>hbase.cluster.distributed</name>
    <value>true</value>
  </property>
  <property>
    <name>hbase.rootdir</name>
    <value>./tmp</value>
  </property>
  <property>
    <name>hbase.unsafe.stream.capability.enforce</name>
    <value>false</value>
  </property>
</configuration>

使用构建
mvn -Dspark.version=3.2.1 -Dscala.version=2.12.15
-Dscala.binary.version=2.12 -Dhbase.version=2.4.16 clean package 得到
hbase-spark-1.0.1-SNAPSHOT.jar
hbase-spark-protocol-1.0.1-SNAPSHOT-sources.jar
original-hbase-spark-protocol-shaded-1.0.1-SNAPSHOT.jar
hbase-spark-it-1.0.1-SNAPSHOT.jar
 hbase-spark-protocol-shaded-1.0.1-SNAPSHOT.jar
hbase-spark-protocol-1.0.1-SNAPSHOT.jar
 hbase-spark-protocol-shaded-1.0.1-SNAPSHOT-sources.jar

将这些jar copy到hbase的lib中,也copy到pyspark的lib中

启动hbase:   ./bin/start-hbase.sh

测试程序 pyspark
----------------------------------------------

from pyspark.sql import SparkSession
from pyspark import SparkConf

spark = SparkSession.builder.master("local").getOrCreate()


df = spark.read.format('org.apache.hadoop.hbase.spark') \
    .option('hbase.table','books') \
    .option('hbase.columns.mapping', \
            'title STRING :key, \
            author STRING info:author, \
            year STRING info:year, \
            views STRING analytics:views') \
    .option('hbase.use.hbase.context', False) \
    .option('hbase.config.resources',
'file:///root/repo/my_hbase/hbase-site.xml') \
    .option('hbase-push.down.column.filter', False) \
    .load()

df.show()
----------------------------------------------
其中hbase-site.xml 内容如下
----------------------------------------------
<configuration>
  <property>
    <name>hbase.cluster.distributed</name>
    <value>true</value>
  </property>
  <property>
    <name>hbase.zookeeper.quorum</name>
    <value>10.9.2.217</value>
  </property>
  <property>
    <name>zookeeper.znode.parent</name>
    <!--or /hbase-->
    <value>/hbase</value>
  </property>
</configuration>
----------------------------------------------

执行结果
root@9412e1e1f853:~/repo/my_hbase# python myhbase.py
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use
setLogLevel(newLevel).
23/04/19 13:40:24 WARN NativeCodeLoader: Unable to load native-hadoop
library for your platform... using builtin-java classes where applicable
23/04/19 13:40:25 WARN Utils: Service 'SparkUI' could not bind on port
4040. Attempting port 4041.
title STRING :key,             author STRING info:author,             year
STRING info:year,             views STRING analytics:views
Traceback (most recent call last):
  File "/root/repo/my_hbase/myhbase.py", line 7, in <module>
    df = spark.read.format('org.apache.hadoop.hbase.spark') \
  File "/usr/local/lib/python3.9/site-packages/pyspark/sql/readwriter.py",
line 164, in load
    return self._df(self._jreader.load())
  File "/usr/local/lib/python3.9/site-packages/py4j/java_gateway.py", line
1321, in __call__
    return_value = get_return_value(
  File "/usr/local/lib/python3.9/site-packages/pyspark/sql/utils.py", line
111, in deco
    return f(*a, **kw)
  File "/usr/local/lib/python3.9/site-packages/py4j/protocol.py", line 326,
in get_return_value
    raise Py4JJavaError(
py4j.protocol.Py4JJavaError: An error occurred while calling o32.load.
: java.lang.NullPointerException
at
org.apache.hadoop.hbase.spark.HBaseRelation.<init>(DefaultSource.scala:138)
at
org.apache.hadoop.hbase.spark.DefaultSource.createRelation(DefaultSource.scala:69)
at
org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:350)
at
org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:274)
at
org.apache.spark.sql.DataFrameReader.$anonfun$load$3(DataFrameReader.scala:245)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:245)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:174)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at
py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
at java.lang.Thread.run(Thread.java:748)

Resonance OpenSky <yangchunlin10061...@gmail.com> 于2023年4月19日周三 13:14写道:

> 我打算使用 hbase connector spark,我是在自己的开发机器上部署hbase的,使用的是local方式,这种情况如何build呢
>
> 我看Readme.md是这样的
> mvn -Dspark.version=3.1.2 -Dscala.version=2.12.10
> -Dscala.binary.version=2.12 -Dhbase.version=2.4.8
> -Dhadoop-three.version=3.2.0 clean install
>
> 对于local模式的HBase,-Dhadoop-three.version该如何指定哇
>

Reply via email to