当前配置 hbase是从官网下载的 2.4.16, 其中hbase-site.xml 配置如下 <configuration> <property> <name>hbase.cluster.distributed</name> <value>true</value> </property> <property> <name>hbase.rootdir</name> <value>./tmp</value> </property> <property> <name>hbase.unsafe.stream.capability.enforce</name> <value>false</value> </property> </configuration>
使用构建 mvn -Dspark.version=3.2.1 -Dscala.version=2.12.15 -Dscala.binary.version=2.12 -Dhbase.version=2.4.16 clean package 得到 hbase-spark-1.0.1-SNAPSHOT.jar hbase-spark-protocol-1.0.1-SNAPSHOT-sources.jar original-hbase-spark-protocol-shaded-1.0.1-SNAPSHOT.jar hbase-spark-it-1.0.1-SNAPSHOT.jar hbase-spark-protocol-shaded-1.0.1-SNAPSHOT.jar hbase-spark-protocol-1.0.1-SNAPSHOT.jar hbase-spark-protocol-shaded-1.0.1-SNAPSHOT-sources.jar 将这些jar copy到hbase的lib中,也copy到pyspark的lib中 启动hbase: ./bin/start-hbase.sh 测试程序 pyspark ---------------------------------------------- from pyspark.sql import SparkSession from pyspark import SparkConf spark = SparkSession.builder.master("local").getOrCreate() df = spark.read.format('org.apache.hadoop.hbase.spark') \ .option('hbase.table','books') \ .option('hbase.columns.mapping', \ 'title STRING :key, \ author STRING info:author, \ year STRING info:year, \ views STRING analytics:views') \ .option('hbase.use.hbase.context', False) \ .option('hbase.config.resources', 'file:///root/repo/my_hbase/hbase-site.xml') \ .option('hbase-push.down.column.filter', False) \ .load() df.show() ---------------------------------------------- 其中hbase-site.xml 内容如下 ---------------------------------------------- <configuration> <property> <name>hbase.cluster.distributed</name> <value>true</value> </property> <property> <name>hbase.zookeeper.quorum</name> <value>10.9.2.217</value> </property> <property> <name>zookeeper.znode.parent</name> <!--or /hbase--> <value>/hbase</value> </property> </configuration> ---------------------------------------------- 执行结果 root@9412e1e1f853:~/repo/my_hbase# python myhbase.py Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). 23/04/19 13:40:24 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 23/04/19 13:40:25 WARN Utils: Service 'SparkUI' could not bind on port 4040. Attempting port 4041. title STRING :key, author STRING info:author, year STRING info:year, views STRING analytics:views Traceback (most recent call last): File "/root/repo/my_hbase/myhbase.py", line 7, in <module> df = spark.read.format('org.apache.hadoop.hbase.spark') \ File "/usr/local/lib/python3.9/site-packages/pyspark/sql/readwriter.py", line 164, in load return self._df(self._jreader.load()) File "/usr/local/lib/python3.9/site-packages/py4j/java_gateway.py", line 1321, in __call__ return_value = get_return_value( File "/usr/local/lib/python3.9/site-packages/pyspark/sql/utils.py", line 111, in deco return f(*a, **kw) File "/usr/local/lib/python3.9/site-packages/py4j/protocol.py", line 326, in get_return_value raise Py4JJavaError( py4j.protocol.Py4JJavaError: An error occurred while calling o32.load. : java.lang.NullPointerException at org.apache.hadoop.hbase.spark.HBaseRelation.<init>(DefaultSource.scala:138) at org.apache.hadoop.hbase.spark.DefaultSource.createRelation(DefaultSource.scala:69) at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:350) at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:274) at org.apache.spark.sql.DataFrameReader.$anonfun$load$3(DataFrameReader.scala:245) at scala.Option.getOrElse(Option.scala:189) at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:245) at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:174) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at py4j.Gateway.invoke(Gateway.java:282) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182) at py4j.ClientServerConnection.run(ClientServerConnection.java:106) at java.lang.Thread.run(Thread.java:748) Resonance OpenSky <yangchunlin10061...@gmail.com> 于2023年4月19日周三 13:14写道: > 我打算使用 hbase connector spark,我是在自己的开发机器上部署hbase的,使用的是local方式,这种情况如何build呢 > > 我看Readme.md是这样的 > mvn -Dspark.version=3.1.2 -Dscala.version=2.12.10 > -Dscala.binary.version=2.12 -Dhbase.version=2.4.8 > -Dhadoop-three.version=3.2.0 clean install > > 对于local模式的HBase,-Dhadoop-three.version该如何指定哇 >