Thank you for the reply.
" save_main_session" did not work, however, situation had changed.
1. get_all_options() output. "save_main_session" set to True.
=================================================================================
2019-09-26 09:04:11,586 DEBUG Pipeline Options:
{'wait_until_finish_duration': None, 'update': False, 'min_cpu_platform':
None, 'dataflow_endpoint': 'https://dataflow.googleapis.com',
'environment_config': 'asia.gcr.io/creationline001/beam/python3:latest',
'machine_type': None, 'enable_streaming_engine': False, 'sdk_location':
'default', 'profile_memory': False, 'max_num_workers': None,
'type_check_strictness': 'DEFAULT_TO_ANY', 'streaming': False,
'setup_file': None, 'network': None, 'on_success_matcher': None,
'requirements_cache': None, 'service_account_email': None,
'environment_type': 'DOCKER', 'disk_type': None, 'labels': None,
'profile_location': None, 'direct_runner_use_stacked_bundle': True,
'use_public_ips': None, ***** 'save_main_session': True, *******
'direct_num_workers': 1, 'num_workers': None,
'worker_harness_container_image': None, 'template_location': None,
'hdfs_port': None, 'flexrs_goal': None, 'profile_cpu': False,
'transform_name_mapping': None, 'profile_sample_rate': 1.0, 'runner':
'PortableRunner', 'project': None, 'dataflow_kms_key': None,
'job_endpoint': 'localhost:8099', 'extra_packages': None,
'environment_cache_millis': 0, 'dry_run': False, 'autoscaling_algorithm':
None, 'staging_location': None, 'job_name': None, 'no_auth': False,
'runtime_type_check': False, 'direct_runner_bundle_repeat': 0,
'subnetwork': None, 'pipeline_type_check': True, 'hdfs_user': None,
'dataflow_job_file': None, 'temp_location': None, 'sdk_worker_parallelism':
0, 'zone': None, 'experiments': ['beam_fn_api'], 'hdfs_host': None,
'disk_size_gb': None, 'dataflow_worker_jar': None, 'requirements_file':
None, 'beam_plugins': None, 'pubsubRootUrl': None, 'region': None}
=================================================================================
2. Error in Task Manager log did not change.
==================================================================================
File "/usr/local/lib/python3.5/site-packages/dill/_dill.py", line 474, in
find_class
return StockUnpickler.find_class(self, module, name)
AttributeError: Can't get attribute 'FlattenTagFilesFn' on <module
'apache_beam.runners.worker.sdk_worker_main' from
'/usr/local/lib/python3.5/site-packages/apache_beam/runners/worker/sdk_worker_main.py'>
==================================================================================
3. However, if I comment out "super().__init__()" in my code , error
changes.
==================================================================================
File
"/usr/local/lib/python3.5/site-packages/apache_beam/runners/worker/bundle_processor.py",
line 1078, in _create_pardo_operation
dofn_data = pickler.loads(serialized_fn)
File
"/usr/local/lib/python3.5/site-packages/apache_beam/internal/pickler.py",
line 265, in loads
return dill.loads(s)
File "/usr/local/lib/python3.5/site-packages/dill/_dill.py", line 317, in
loads
return load(file, ignore)
File "/usr/local/lib/python3.5/site-packages/dill/_dill.py", line 305, in
load
obj = pik.load()
File "/usr/local/lib/python3.5/site-packages/dill/_dill.py", line 474, in
find_class
return StockUnpickler.find_class(self, module, name)
ImportError: No module named 's3_credentials'
==================================================================================
4. My whole class is below.
==================================================================================
class FlattenTagFilesFn(beam.DoFn):
def __init__(self, s3Bucket, s3Creds, maxKeys=1000):
self.s3Bucket = s3Bucket
self.s3Creds = s3Creds
self.maxKeys = maxKeys
super().__init__()
def process(self, elem):
if not hasattr(self, 's3Client'):
import boto3
self.s3Client = boto3.client('s3',
aws_access_key_id=self.s3Creds.awsAccessKeyId,
aws_secret_access_key=self.s3Creds.awsSecretAccessKey)
(key, info) = elem
preFrm = {}
resp1 = self.s3Client.get_object(Bucket=self.s3Bucket,
Key=info['pre'][0][0])
yaml1 = yaml.load(resp1['Body'])
for elem in yaml1['body']:
preFrm[ elem['frame_tag']['frame_no'] ] = elem
postFrm = {}
resp2 = self.s3Client.get_object(Bucket=self.s3Bucket,
Key=info['post'][0][0])
yaml2 = yaml.load(resp2['Body'])
for elem in yaml2['body']:
postFrm[ elem['frame_tag']['frame_no'] ] = elem
commonFrmNums =
set(list(preFrm.keys())).intersection(list(postFrm.keys()))
for f in commonFrmNums:
frames = Frames(
self.s3Bucket,
info['pre'][0][0], # Pre S3Key
info['post'][0][0], # Post S3Key
yaml1['head']['operator_id'], # Pre OperatorId
yaml2['head']['operator_id'], # Post OperatorId
preFrm[f], # Pre Frame Line
postFrm[f], # Post Frame Line
info['pre'][0][1], # Pre Last Modified
Time
info['post'][0][1]) # Post Last
Modified Time
yield (frames)
tagCounts = TagCounts(
self.s3Bucket,
yaml1, # Pre Yaml
yaml2, # Post Yaml
info['pre'][0][0], # Pre S3Key
info['post'][0][0], # Post S3Key
info['pre'][0][1], # Pre Last Modified Time
info['post'][0][1] ) # Post Last Modified Time
yield beam.pvalue.TaggedOutput('counts', tagCounts)
==================================================================================
I was using super() to define single instance of boto instance in ParDo.
May I ask, is there a way to call super() in the constructor of ParDo ?
Thanks,
Yu
On Thu, Sep 26, 2019 at 7:49 AM Kyle Weaver <[email protected]> wrote:
> You will need to set the save_main_session pipeline option to True.
>
> Kyle Weaver | Software Engineer | github.com/ibzib | [email protected]
>
>
> On Wed, Sep 25, 2019 at 3:44 PM Yu Watanabe <[email protected]> wrote:
>
>> Hello.
>>
>> I would like to ask question for ParDo .
>>
>> I am getting below error inside TaskManager when running code on Apache
>> Flink using Portable Runner.
>> =====================================================
>> ....
>> File
>> "/usr/local/lib/python3.5/site-packages/apache_beam/runners/worker/bundle_processor.py",
>> line 1078, in _create_pardo_operation
>> dofn_data = pickler.loads(serialized_fn)
>> File
>> "/usr/local/lib/python3.5/site-packages/apache_beam/internal/pickler.py",
>> line 265, in loads
>> return dill.loads(s)
>> File "/usr/local/lib/python3.5/site-packages/dill/_dill.py", line 317,
>> in loads
>> return load(file, ignore)
>> File "/usr/local/lib/python3.5/site-packages/dill/_dill.py", line 305,
>> in load
>> obj = pik.load()
>> File "/usr/local/lib/python3.5/site-packages/dill/_dill.py", line 474,
>> in find_class
>> return StockUnpickler.find_class(self, module, name)
>> AttributeError: Can't get attribute 'FlattenTagFilesFn' on <module
>> 'apache_beam.runners.worker.sdk_worker_main' from
>> '/usr/local/lib/python3.5/site-packages/apache_beam/runners/worker/sdk_worker_main.py'>
>> =====================================================
>>
>> " FlattenTagFilesFn" is defined as ParDo and called from Pipeline as
>> below.
>> =====================================================
>> frames, counts = ({'pre': pcollPre, 'post': pcollPost}
>> | 'combined:cogroup' >> beam.CoGroupByKey()
>> | 'combined:exclude' >> beam.Filter(lambda x:
>> (len(x[1]['pre']) > 0) and (len(x[1]['post']) > 0))
>> | 'combined:flat' >>
>> beam.ParDo(FlattenTagFilesFn(s3Bucket, s3Creds))
>> .with_outputs('counts',
>> main='frames'))
>> =====================================================
>>
>> In the same file I have defined the class as below.
>> =====================================================
>> class FlattenTagFilesFn(beam.DoFn):
>> def __init__(self, s3Bucket, s3Creds, maxKeys=1000):
>> self.s3Bucket = s3Bucket
>> self.s3Creds = s3Creds
>> self.maxKeys = maxKeys
>> =====================================================
>>
>> This is not a problem when running pipeline using DirectRunner.
>> May I ask , how should I import class for ParDo when running on Flink ?
>>
>> Thanks,
>> Yu Watanabe
>>
>> --
>> Yu Watanabe
>> Weekend Freelancer who loves to challenge building data platform
>> [email protected]
>> [image: LinkedIn icon] <https://www.linkedin.com/in/yuwatanabe1> [image:
>> Twitter icon] <https://twitter.com/yuwtennis>
>>
>
--
Yu Watanabe
Weekend Freelancer who loves to challenge building data platform
[email protected]
[image: LinkedIn icon] <https://www.linkedin.com/in/yuwatanabe1> [image:
Twitter icon] <https://twitter.com/yuwtennis>