+Chamikara Jayalath <[email protected]>

Could you try with beam 2.27.0 or 2.28.0? I think that this PR [1] may have
addressed the issue. It avoids the problematic code when the pipeline is
multi-language [2].

[1] https://github.com/apache/beam/pull/13536
[2]
https://github.com/apache/beam/blob/7eff49fae34e8d3c50716f5da14fa6bcc607fc67/sdks/python/apache_beam/pipeline.py#L524

On Tue, Mar 30, 2021 at 12:55 PM Maria-Irina Sandu <[email protected]>
wrote:

> I'm trying to write to a Kafka topic using WriteTokafka module from
> apache_beam.io.kafka.
> The error I get is:
>
>> File "predict.py", line 162, in <module>
>> run()
>> File "predict.py", line 158, in run
>> topic = 'int.fitbit_explore.video_recommendations'))
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>> line 580, in __exit__
>> self.result = self.run()
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>> line 530, in run
>> self._options).run(False)
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>> line 902, in from_runner_api
>> p.transforms_stack = [context.transforms.get_by_id(root_transform_id)]
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/pipeline_context.py",
>> line 116, in get_by_id
>> self._id_to_proto[id], self._pipeline_context)
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>> line 1252, in from_runner_api
>> part = context.transforms.get_by_id(transform_id)
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/pipeline_context.py",
>> line 116, in get_by_id
>> self._id_to_proto[id], self._pipeline_context)
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>> line 1252, in from_runner_api
>> part = context.transforms.get_by_id(transform_id)
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/pipeline_context.py",
>> line 116, in get_by_id
>> self._id_to_proto[id], self._pipeline_context)
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>> line 1252, in from_runner_api
>> part = context.transforms.get_by_id(transform_id)
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/pipeline_context.py",
>> line 116, in get_by_id
>> self._id_to_proto[id], self._pipeline_context)
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>> line 1252, in from_runner_api
>> part = context.transforms.get_by_id(transform_id)
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/runners/pipeline_context.py",
>> line 116, in get_by_id
>> self._id_to_proto[id], self._pipeline_context)
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/pipeline.py",
>> line 1229, in from_runner_api
>> transform = ptransform.PTransform.from_runner_api(proto, context)
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/transforms/ptransform.py",
>> line 733, in from_runner_api
>> context)
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/transforms/core.py",
>> line 1420, in from_runner_api_parameter
>> pardo_payload.do_fn, context).serialized_dofn_data())
>> File
>> "/Users/msandu/rec_models/predict_workouts/experiment_kafka/env/lib/python3.7/site-packages/apache_beam/transforms/core.py",
>> line 1493, in from_runner_api
>> raise ValueError('Unexpected DoFn type: %s' % spec.urn)
>> ValueError: Unexpected DoFn type: beam:dofn:javasdk:0.1
>
>
> The pipeline looks like this:
>
>> pipeline_options = PipelineOptions(argv)
>> with beam.Pipeline(options=pipeline_options) as p:
>> _ = (p | 'Create' >> beam.Create(['Start'])
>> | 'Read MDAU' >>
>> beam.io.textio.ReadFromText("gs://fit-recommend-system-testpy/saved_model/dummy_mdau.txt")
>> | 'Predict' >> beam.ParDo(PredictDoFn())
>> | 'EncodeThrift' >> beam.ParDo(ThriftEncodeDoFn())
>> | 'WriteToKafka' >> WriteToKafka(producer_config = {'bootstrap.servers' :
>> '<fitbit-bootstrap-server>:9092'},
>> topic = '<internal_fitbit_topic>'))
>
>
> I replaced the bootstrap server and topic values with placeholders here
> because I'm not sure if I should show them or not.
>
> The ThriftEncodeDoFn function seems to work. It produces a tuple of bytes
> and it looks like this:
>
> class ThriftEncodeDoFn(beam.DoFn):  def encode(self, element):
>     video = VideosAndRatings()
>     video.videoId = str(element['videoId'])
>     video.rating = 5
>     video.index = 1
>     videosList = [video]
>     recommendations = RecommendationsKafkaMessage()    recommendations.userId 
> = str(element['userId'])
>     recommendations.videos = videosList
>     recommendations.category = "DISCOVER_WORKOUTS"    
> print(recommendations.userId, recommendations.category)
>     trans = TTransport.TMemoryBuffer()
>     proto = TBinaryProtocol.TBinaryProtocol(trans)
>     recommendations.write(proto)    encoded_data = bytes(trans.getvalue())
>     encoded_key = str(element['userId']).encode()    return encoded_key, 
> encoded_data
>
>   def process(self, element) -> Iterable[Tuple[bytes,bytes]]:
>     try:
>       encoded_key, encoded_data = self.encode(element)
>       yield (encoded_key, encoded_data)
>     except Exception as e:
>       print("encoding didn't work", e)
>       yield TaggedOutput('encode_errors', f'element={element}, error={e}')
>
> The command I use to run the pipeline is this:
>
> python3 predict.py \
>   --work-dir gs://fit-recommend-system-testpy/saved_model \
>   --batch \
>   --project fit-recommend-system-int \
>   --runner DataflowRunner \
>   --setup_file ./setup.py \
>   --subnetwork https://www.googleapis.com/compute/v1/projects/< 
> <https://www.googleapis.com/compute/v1/projects/fit-networking-glob/regions/us-central1/subnetworks/fit-networking-glob>fitbit-internal-subnetwork>
>  \
>   --job_name prediction \
>   --region us-central1 \
>   --temp_location gs://fit-recommend-system-testpy/temp \
>   --staging_location gs://fit-recommend-system-testpy/staging \
>   --no_use_public_ips \
>   --sdk_harness_container_image_overrides 
> ".*java.*,gcr.io/cloud-dataflow/v1beta3/beam_java8_sdk:2.26.0" \
>   --service_account_email 
> [email protected]
>
> And I have installed apache beam with python3 -m pip install 
> apache_beam[gcp]==2.26.0.
>
> Any help with this is much appreciated!
>
> Best regards,
>
> Irina
>
>

Reply via email to