Hello
i m a muppet. Did not notice this in the colab sample
https://github.com/blueviggen/beam-remote-llm-examples/blob/main/gemini_runinference_example.ipynb
# Only supported for genai package 1.21.1 or earlier
output_text = gemini_response.content.parts[0].text
Using that package i can run sample pipeline on my local machine
I have further questions on the GeminiModelHandler as i could not find
anything via google..
How can i specify system instructions ? I was able to do so with the
OpenAIHandler - below a snippet copied from a prev mail Danny sent me few
months ago
class SampleOpenAIHandler(ModelHandler):
"""DoFn that accepts a batch of images as bytearray
and sends that batch to the Cloud Vision API for remote inference"""
def __init__(self, oai_key, llm_instructions):
self.oai_key = oai_key
self.llm_instructions = llm_instructions
def load_model(self):
"""Initiate the Google Vision API client."""
"""Initiate the OAI API client."""
client = openai.OpenAI(
# This is the default and can be omitted
api_key=self.oai_key,
)
return client
def run_inference(self, batch, model, inference):
response = model.responses.create(
model="gpt-4o",
instructions=self.llm_instructions,
input=batch[0],
)
return [response.output_text]
Kind regards
Marco
On Fri, Oct 10, 2025 at 10:51 PM Marc _ <[email protected]> wrote:
> Danny / XQ
> got some setback.
> I copied the colab gemini sample,.
> https://github.com/blueviggen/beam-remote-llm-examples/blob/main/gemini_runinference_example.ipynb
>
> I Have added the following lines to post processor to figure out what is
> going on
>
> input_prompt = element.example
>
> # The API response is in `element.inference`
> # Path to text: response -> candidates -> content -> parts -> text
> gemini_inference = element.inference
> print(f'element.inference is {gemini_inference}')
> print(gemini_inference[1])
>
> The code works fine in colab and i can see that the response matches the
> docs
> element.inference is ('candidates',
> [Candidate(content=Content(parts=[Part(video_metadata=None, thought=None,
> inline_data=None, file_data=None, thought_signature=None,
> code_execution_result=None, executable_code=None, function_call=None,
> function_response=None, text='```json\n{\n "question": "What is 1+2?",\n
> "answer": 3\n}\n```')], role='model'), citation_metadata=None,
> finish_message=None, token_count=None, finish_reason=<FinishReason.STOP:
> 'STOP'>, url_context_metadata=None, avg_logprobs=None,
> grounding_metadata=None, index=0, logprobs_result=None,
> safety_ratings=None)])
>
> But when i run the same pipeline on GCP DataFlow, it seems i can
> only capture the first HttpResponse with all headers. the rest of the
> response is gone.......
> Plus, the response is not a Candidate but an HttpResponse and hence the
> following code fails miserably
>
> Is it because GCP is running multiple workers and somehow i am only
> capturing the first 'streamed' response from the model?
>
> Kind regards
> Marco
>
>
>
>
> element.inference is ('sdk_http_response', HttpResponse( headers=<dict
> len=10> ))
>
> <https://console.cloud.google.com/logs/query;query=resource.type%3D%22dataflow_step%22%20resource.labels.job_id%3D%222025-10-10_14_40_13-2699715226748068892%22%20logName%3D%22projects%2Fdatascience-projects%2Flogs%2Fdataflow.googleapis.com%252Fworker%22%20resource.labels.step_id%3D%2528%22PostProcess%22%2529%20timestamp%20%3E%3D%20%222025-10-10T21:40:13.801Z%22%20timestamp%20%3C%3D%20%222025-10-10T21:46:28.995Z%22%20severity%3E%3DDEFAULT;timeRange=2025-10-10T21:44:25.660899877Z%2F2025-10-10T21:44:25.660899877Z--PT1H;storageScope=project;pinnedLogId=2025-10-10T21:44:25.660899877Z%2F6182574922792223526:174769:0:14686?hl=en&project=datascience-projects>
>
> <https://console.cloud.google.com/logs/query;query=resource.type%3D%22dataflow_step%22%20resource.labels.job_id%3D%222025-10-10_14_40_13-2699715226748068892%22%20logName%3D%22projects%2Fdatascience-projects%2Flogs%2Fdataflow.googleapis.com%252Fworker%22%20resource.labels.step_id%3D%2528%22PostProcess%22%2529%20timestamp%20%3E%3D%20%222025-10-10T21:40:13.801Z%22%20timestamp%20%3C%3D%20%222025-10-10T21:46:28.995Z%22%20severity%3E%3DDEFAULT;timeRange=2025-10-10T21:44:25.660899877Z%2F2025-10-10T21:44:25.660899877Z--PT1H;storageScope=project;pinnedLogId=2025-10-10T21:44:25.660899877Z%2F6182574922792223526:174769:0:14686?hl=en&project=datascience-projects>
>
> <https://console.cloud.google.com/logs/query;query=resource.type%3D%22dataflow_step%22%20resource.labels.job_id%3D%222025-10-10_14_40_13-2699715226748068892%22%20logName%3D%22projects%2Fdatascience-projects%2Flogs%2Fdataflow.googleapis.com%252Fworker%22%20resource.labels.step_id%3D%2528%22PostProcess%22%2529%20timestamp%20%3E%3D%20%222025-10-10T21:40:13.801Z%22%20timestamp%20%3C%3D%20%222025-10-10T21:46:28.995Z%22%20severity%3E%3DDEFAULT;timeRange=2025-10-10T21:44:25.660899877Z%2F2025-10-10T21:44:25.660899877Z--PT1H;storageScope=project;pinnedLogId=2025-10-10T21:44:25.660899877Z%2F6182574922792223526:174769:0:14686?hl=en&project=datascience-projects>
>
> <https://console.cloud.google.com/logs/query;query=resource.type%3D%22dataflow_step%22%20resource.labels.job_id%3D%222025-10-10_14_40_13-2699715226748068892%22%20logName%3D%22projects%2Fdatascience-projects%2Flogs%2Fdataflow.googleapis.com%252Fworker%22%20resource.labels.step_id%3D%2528%22PostProcess%22%2529%20timestamp%20%3E%3D%20%222025-10-10T21:40:13.801Z%22%20timestamp%20%3C%3D%20%222025-10-10T21:46:28.995Z%22%20severity%3E%3DDEFAULT;timeRange=2025-10-10T21:44:25.660899877Z%2F2025-10-10T21:44:25.660899877Z--PT1H;storageScope=project;pinnedLogId=2025-10-10T21:44:25.660899877Z%2F6182574922792223526:174769:0:14686?hl=en&project=datascience-projects>
>
> <https://console.cloud.google.com/logs/query;query=resource.type%3D%22dataflow_step%22%20resource.labels.job_id%3D%222025-10-10_14_40_13-2699715226748068892%22%20logName%3D%22projects%2Fdatascience-projects%2Flogs%2Fdataflow.googleapis.com%252Fworker%22%20resource.labels.step_id%3D%2528%22PostProcess%22%2529%20timestamp%20%3E%3D%20%222025-10-10T21:40:13.801Z%22%20timestamp%20%3C%3D%20%222025-10-10T21:46:28.995Z%22%20severity%3E%3DDEFAULT;timeRange=2025-10-10T21:44:25.660899877Z%2F2025-10-10T21:44:25.660899877Z--PT1H;storageScope=project;pinnedLogId=2025-10-10T21:44:25.660899877Z%2F6182574922792223526:174769:0:14686?hl=en&project=datascience-projects>
>
>
>
>
>
>
>
>
>
>
>
>
> On Thu, Oct 9, 2025 at 2:51 PM Marc _ <[email protected]> wrote:
>
>> thanks Danny / XQ, will have a look and report back if i am stuck
>> kr
>>
>> On Thu, Oct 9, 2025 at 2:22 PM Danny McCormick via user <
>> [email protected]> wrote:
>>
>>> If you're using the Dataflow runner,
>>> https://cloud.google.com/dataflow/docs/concepts/security-and-permissions#permissions
>>> has
>>> some info as well - basically you'd want to make sure the worker service
>>> account has access to the Vertex endpoint you're using.
>>>
>>> Thanks,
>>> Danny
>>>
>>> On Thu, Oct 9, 2025 at 9:18 AM XQ Hu via user <[email protected]>
>>> wrote:
>>>
>>>> I think
>>>> https://cloud.google.com/dataflow/docs/notebooks/run_inference_vertex_ai
>>>> has more details for you to get started.
>>>>
>>>> On Thu, Oct 9, 2025 at 7:14 AM Marc _ <[email protected]> wrote:
>>>>
>>>>> Hello all
>>>>> i want to port this example to a real dataflow pipeline i am running,
>>>>> as i want to move from
>>>>> OpenAI to dataflow
>>>>>
>>>>>
>>>>> https://github.com/blueviggen/beam-remote-llm-examples/blob/main/gemma_runinference_example.ipynb
>>>>>
>>>>> Could anyone advise on the authentication side for accessing VertexAI?
>>>>>
>>>>> Kind regards
>>>>> Marco
>>>>>
>>>>