I don't have a build unfortunately, I'm using the maven dependency. I'll
try to find a workaround. Thx for your help.
-s
On 20.02.2015 12:44, Robert Metzger wrote:
Hey Sebastian,
I've fixed the issue in this branch:
https://github.com/rmetzger/flink/tree/flink1589:
Configuration c =newConfiguration();
c.setFloat(ConfigConstants.TASK_MANAGER_MEMORY_FRACTION_KEY,0.5f);
finalExecutionEnvironment env = ExecutionEnvironment.createLocalEnvironment(c);
I'll also backport the fix to the release-0.8 branch to make it
available in the 0.8.2 release.
Maybe you can easily cherry-pick the commit to your 0.8.1 Flink build.
Best,
Robert
On Fri, Feb 20, 2015 at 12:11 PM, Robert Metzger <rmetz...@apache.org
<mailto:rmetz...@apache.org>> wrote:
Hi Sebastian,
Looks like you've found a limitation of Flink.
I've already filed two JIRAs to resolve the issue
(https://issues.apache.org/jira/browse/FLINK-1588,
https://issues.apache.org/jira/browse/FLINK-1589).
I don't know your setup, when you use Flink just as a dependency
without a version being checked out, there is probably no way right
now to use change the configuration settings.
Then, you have to start yourself a local cluster
(./bin/start-local.sh (+ your settings in conf/flink-conf.yaml)).
You can then either submit your job with ./bin/flink or using the
RemoteExecutionEnvironment (ExecutionEnvironment.createRemoteEnvironment()).
If you have the Flink source checked out, you can also hard-code the
configuration values into org.apache.flink.client.LocalExecutor.
By the way, Flink 0.8.1 is now available on maven central (I suspect
you had to build it yourself yesterday evening).
But given these issues here, it doesn't matter for you anymore ;)
Best,
Robert
On Fri, Feb 20, 2015 at 11:48 AM, Sebastian <ssc.o...@googlemail.com
<mailto:ssc.o...@googlemail.com>> wrote:
I'm running flink from my IDE, how do change this setting in
that context?
On 20.02.2015 11:41, Fabian Hueske wrote:
Have you tried to increase the heap size by shrinking the
TM-managed memory?
Reduce the fraction (taskmanager.memory.fraction) or fix the
amount of TM memory (taskmanager.memory.size) in the
flink-config.yaml [1].
Cheers, Fabian
[1] http://flink.apache.org/docs/__0.8/config.html
<http://flink.apache.org/docs/0.8/config.html>
On 20 Feb 2015, at 11:30, Sebastian
<ssc.o...@googlemail.com
<mailto:ssc.o...@googlemail.com>> wrote:
Hi,
I get a strange out of memory error from the
serialization code when I try to run the following program:
def compute(trackingGraphFile: String, domainIndexFile:
String,
outputPath: String) = {
implicit val env =
ExecutionEnvironment.__getExecutionEnvironment
val edges = GraphUtils.readEdges(__trackingGraphFile)
val domains = GraphUtils.readVertices(__domainIndexFile)
val domainsByCompany = DomainsByCompany.mapping
val companyEdges = edges.filter { edge =>
domainsByCompany.contains(__edge.src.toInt) }
.map { edge => domainsByCompany(edge.src.__toInt) ->
edge.target.toInt }
.distinct
val companyBitMaps = companyEdges.groupBy(0).__reduceGroup {
domainsByCompany: Iterator[(String,Int)] =>
var company = ""
val seenAt = new util.BitSet(42889800)
for ((name, domain) <- domainsByCompany) {
company = name
seenAt.set(domain)
}
company -> seenAt
}
companyBitMaps.print()
env.execute()
}
The error looks as follows:
2015-02-20 11:22:54 INFO JobClient:345 -
java.lang.OutOfMemoryError: Java heap space
at org.apache.flink.runtime.io
<http://org.apache.flink.runtime.io>.__network.serialization.__DataOutputSerializer.resize(__DataOutputSerializer.java:249)
at org.apache.flink.runtime.io
<http://org.apache.flink.runtime.io>.__network.serialization.__DataOutputSerializer.write(__DataOutputSerializer.java:93)
at
org.apache.flink.api.java.__typeutils.runtime.__DataOutputViewStream.write(__DataOutputViewStream.java:39)
at com.esotericsoftware.kryo.io
<http://com.esotericsoftware.kryo.io>.__Output.flush(Output.java:163)
at com.esotericsoftware.kryo.io
<http://com.esotericsoftware.kryo.io>.__Output.require(Output.java:__142)
at com.esotericsoftware.kryo.io
<http://com.esotericsoftware.kryo.io>.__Output.writeBoolean(Output.__java:613)
at
com.twitter.chill.java.__BitSetSerializer.write(__BitSetSerializer.java:42)
at
com.twitter.chill.java.__BitSetSerializer.write(__BitSetSerializer.java:29)
at
com.esotericsoftware.kryo.__Kryo.writeClassAndObject(Kryo.__java:599)
at
org.apache.flink.api.java.__typeutils.runtime.__KryoSerializer.serialize(__KryoSerializer.java:155)
at
org.apache.flink.api.scala.__typeutils.CaseClassSerializer.__serialize(CaseClassSerializer.__scala:91)
at
org.apache.flink.api.scala.__typeutils.CaseClassSerializer.__serialize(CaseClassSerializer.__scala:30)
at
org.apache.flink.runtime.__plugable.__SerializationDelegate.write(__SerializationDelegate.java:51)
at org.apache.flink.runtime.io
<http://org.apache.flink.runtime.io>.__network.serialization.__SpanningRecordSerializer.__addRecord(__SpanningRecordSerializer.java:__76)
at org.apache.flink.runtime.io
<http://org.apache.flink.runtime.io>.__network.api.RecordWriter.emit(__RecordWriter.java:82)
at
org.apache.flink.runtime.__operators.shipping.__OutputCollector.collect(__OutputCollector.java:88)
at
org.apache.flink.api.scala.__GroupedDataSet$$anon$2.reduce(__GroupedDataSet.scala:262)
at
org.apache.flink.runtime.__operators.GroupReduceDriver.__run(GroupReduceDriver.java:__124)
at
org.apache.flink.runtime.__operators.RegularPactTask.run(__RegularPactTask.java:493)
at
org.apache.flink.runtime.__operators.RegularPactTask.__invoke(RegularPactTask.java:__360)
at
org.apache.flink.runtime.__execution.RuntimeEnvironment.__run(RuntimeEnvironment.java:__257)
at java.lang.Thread.run(Thread.__java:745)
I run the job locally, giving 2GB of Ram to the VM. The
code will produce less than 10 groups and the bitsets
used internally should not be larger than a few megabytes.
Any tips on how to fix this?
Best,
Sebastian
PS: Still waiting for a reduceGroup that gives me the key ;)