Sorry, I don't understand the question.
Can you describe a bit better what you mean with "how i can sum all
points and share thoug the counter" ?
Thanks!
On Fri, May 22, 2015 at 2:06 PM, Pa Rö <paul.roewer1...@googlemail.com
<mailto:paul.roewer1...@googlemail.com>> wrote:
i have fix a bug at the input reading, but the results are still
different.
i think i have local the problem, in the other implementation i
sum all geo points/time points and share thougt the counter.
but in flink i sum two points and share thougt two, and sum the
next...
the method is the following:
// sums and counts point coordinates
private static final class CentroidAccumulator implements
ReduceFunction<Tuple2<Integer, GeoTimeDataTupel>> {
private static final long serialVersionUID =
-4868797820391121771L;
public Tuple2<Integer, GeoTimeDataTupel>
reduce(Tuple2<Integer, GeoTimeDataTupel> val1, Tuple2<Integer,
GeoTimeDataTupel> val2) {
return new Tuple2<Integer, GeoTimeDataTupel>(val1.f0,
addAndDiv(val1.f0,val1.f1,val2.f1));
}
}
private static GeoTimeDataTupel addAndDiv(int
clusterid,GeoTimeDataTupel input1, GeoTimeDataTupel input2){
long time = (input1.getTime()+input2.getTime())/2;
List<LatLongSeriable> list = new ArrayList<LatLongSeriable>();
list.add(input1.getGeo());
list.add(input2.getGeo());
LatLongSeriable geo = Geometry.getGeoCenterOf(list);
return new GeoTimeDataTupel(geo,time,"POINT");
}
how i can sum all points and share thoug the counter?
2015-05-22 9:53 GMT+02:00 Pa Rö <paul.roewer1...@googlemail.com
<mailto:paul.roewer1...@googlemail.com>>:
hi,
if i print the centroids all are show in the output. i have
implement k means with map reduce und spark. by same input, i
get the same output. but in flink i get a one cluster output
with this input set. (i use csv files from the GDELT projekt)
here my class:
public class FlinkMain {
public static void main(String[] args) {
//load properties
Properties pro = new Properties();
try {
pro.load(new
FileInputStream("./resources/config.properties"));
} catch (Exception e) {
e.printStackTrace();
}
int maxIteration =
1;//Integer.parseInt(pro.getProperty("maxiterations"));
String outputPath = pro.getProperty("flink.output");
// set up execution environment
ExecutionEnvironment env =
ExecutionEnvironment.getExecutionEnvironment();
// get input points
DataSet<GeoTimeDataTupel> points = getPointDataSet(env);
DataSet<GeoTimeDataCenter> centroids =
getCentroidDataSet(env);
// set number of bulk iterations for KMeans algorithm
IterativeDataSet<GeoTimeDataCenter> loop =
centroids.iterate(maxIteration);
DataSet<GeoTimeDataCenter> newCentroids = points
// compute closest centroid for each point
.map(new
SelectNearestCenter()).withBroadcastSet(loop, "centroids")
// count and sum point coordinates for each centroid
.groupBy(0).reduce(new CentroidAccumulator())
// compute new centroids from point counts and
coordinate sums
.map(new CentroidAverager());
// feed new centroids back into next iteration
DataSet<GeoTimeDataCenter> finalCentroids =
loop.closeWith(newCentroids);
DataSet<Tuple2<Integer, GeoTimeDataTupel>>
clusteredPoints = points
// assign points to final clusters
.map(new
SelectNearestCenter()).withBroadcastSet(finalCentroids,
"centroids");
// emit result
clusteredPoints.writeAsCsv(outputPath+"/points", "\n", " ");
finalCentroids.writeAsText(outputPath+"/centers");//print();
// execute program
try {
env.execute("KMeans Flink");
} catch (Exception e) {
e.printStackTrace();
}
}
private static final class SelectNearestCenter extends
RichMapFunction<GeoTimeDataTupel,Tuple2<Integer,GeoTimeDataTupel>>
{
private static final long serialVersionUID =
-2729445046389350264L;
private Collection<GeoTimeDataCenter> centroids;
@Override
public void open(Configuration parameters) throws
Exception {
this.centroids =
getRuntimeContext().getBroadcastVariable("centroids");
}
@Override
public Tuple2<Integer, GeoTimeDataTupel>
map(GeoTimeDataTupel point) throws Exception {
double minDistance = Double.MAX_VALUE;
int closestCentroidId= -1;
// check all cluster centers
for(GeoTimeDataCenter centroid : centroids) {
// compute distance
double distance = Distance.ComputeDist(point,
centroid);
// update nearest cluster if necessary
if(distance < minDistance) {
minDistance = distance;
closestCentroidId = centroid.getId();
}
}
// emit a new record with the center id and the
data point
return new Tuple2<Integer,
GeoTimeDataTupel>(closestCentroidId, point);
}
}
// sums and counts point coordinates
private static final class CentroidAccumulator implements
ReduceFunction<Tuple2<Integer, GeoTimeDataTupel>> {
private static final long serialVersionUID =
-4868797820391121771L;
public Tuple2<Integer, GeoTimeDataTupel>
reduce(Tuple2<Integer, GeoTimeDataTupel> val1, Tuple2<Integer,
GeoTimeDataTupel> val2) {
return new Tuple2<Integer,
GeoTimeDataTupel>(val1.f0, addAndDiv(val1.f1,val2.f1));
}
}
private static GeoTimeDataTupel addAndDiv(GeoTimeDataTupel
input1, GeoTimeDataTupel input2){
long time = (input1.getTime()+input2.getTime())/2;
List<LatLongSeriable> list = new
ArrayList<LatLongSeriable>();
list.add(input1.getGeo());
list.add(input2.getGeo());
LatLongSeriable geo = Geometry.getGeoCenterOf(list);
return new GeoTimeDataTupel(geo,time,"POINT");
}
// computes new centroid from coordinate sum and count of
points
private static final class CentroidAverager implements
MapFunction<Tuple2<Integer, GeoTimeDataTupel>,
GeoTimeDataCenter> {
private static final long serialVersionUID =
-2687234478847261803L;
public GeoTimeDataCenter map(Tuple2<Integer,
GeoTimeDataTupel> value) {
return new GeoTimeDataCenter(value.f0,
value.f1.getGeo(),value.f1.getTime());
}
}
private static DataSet<GeoTimeDataTupel>
getPointDataSet(ExecutionEnvironment env) {
// load properties
Properties pro = new Properties();
try {
pro.load(new
FileInputStream("./resources/config.properties"));
} catch (Exception e) {
e.printStackTrace();
}
String inputFile = pro.getProperty("input");
// map csv file
return env.readCsvFile(inputFile)
.ignoreInvalidLines()
.fieldDelimiter('\u0009')
//.fieldDelimiter("\t")
//.lineDelimiter("\n")
.includeFields(true, true, false, false, false,
false, false, false, false, false, false
, false, false, false, false, false,
false, false, false, false, false
, false, false, false, false, false,
false, false, false, false, false
, false, false, false, false, false,
false, false, false, true, true
, false, false, false, false, false,
false, false, false, false, false
, false, false, false, false, false,
false, false, false)
//.includeFields(true,true,true,true)
.types(String.class, Long.class, Double.class,
Double.class)
.map(new TuplePointConverter());
}
private static final class TuplePointConverter implements
MapFunction<Tuple4<String, Long, Double, Double>,
GeoTimeDataTupel>{
private static final long serialVersionUID =
3485560278562719538L;
public GeoTimeDataTupel map(Tuple4<String, Long,
Double, Double> t) throws Exception {
return new GeoTimeDataTupel(new
LatLongSeriable(t.f2, t.f3), t.f1, t.f0);
}
}
private static DataSet<GeoTimeDataCenter>
getCentroidDataSet(ExecutionEnvironment env) {
// load properties
Properties pro = new Properties();
try {
pro.load(new
FileInputStream("./resources/config.properties"));
} catch (Exception e) {
e.printStackTrace();
}
String seedFile = pro.getProperty("seed.file");
boolean seedFlag =
Boolean.parseBoolean(pro.getProperty("seed.flag"));
// get points from file or random
if(seedFlag || !(new File(seedFile+"-1").exists())) {
Seeding.randomSeeding();
}
// map csv file
return env.readCsvFile(seedFile+"-1")
.lineDelimiter("\n")
.fieldDelimiter('\u0009')
//.fieldDelimiter("\t")
.includeFields(true, true, true, true)
.types(Integer.class, Double.class, Double.class,
Long.class)
.map(new TupleCentroidConverter());
}
private static final class TupleCentroidConverter
implements MapFunction<Tuple4<Integer, Double, Double, Long>,
GeoTimeDataCenter>{
private static final long serialVersionUID =
-1046538744363026794L;
public GeoTimeDataCenter map(Tuple4<Integer, Double,
Double, Long> t) throws Exception {
return new GeoTimeDataCenter(t.f0,new
LatLongSeriable(t.f1, t.f2), t.f3);
}
}
}
2015-05-21 14:22 GMT+02:00 Till Rohrmann <trohrm...@apache.org
<mailto:trohrm...@apache.org>>:
Concerning your first problem that you only see one
resulting centroid, your code looks good modulo the parts
you haven't posted.
However, your problem could simply be caused by a bad
selection of initial centroids. If, for example, all
centroids except for one don't get any points assigned,
then only one centroid will survive the iteration step.
How do you do it?
To check that all centroids are read you can print the
contents of the centroids DataSet. Furthermore, you can
simply println the new centroids after each iteration
step. In local mode you can then observe the computation.
Cheers,
Till
On Thu, May 21, 2015 at 12:23 PM, Stephan Ewen
<se...@apache.org <mailto:se...@apache.org>> wrote:
Hi!
This problem should not depend on any user code. There
are no user-code dependent actors in Flink.
Is there more stack trace that you can send us? It
looks like it misses the core exception that is
causing the issue is not part of the stack trace.
Greetings,
Stephan
On Thu, May 21, 2015 at 11:11 AM, Pa Rö
<paul.roewer1...@googlemail.com
<mailto:paul.roewer1...@googlemail.com>> wrote:
hi flink community,
i have implement k-means for clustering temporal
geo data. i use the following github project and
my own data structure:
https://github.com/apache/flink/blob/master/flink-examples/flink-java-examples/src/main/java/org/apache/flink/examples/java/clustering/KMeans.java
not i have the problem, that flink read the
centroids from file and work parallel futher. if i
look at the results, i have the feeling, that the
prgramm load only one centroid point.
i work with flink 0.8.1, if i update to 0.9
milestone 1 i get the following exception:
ERROR actor.OneForOneStrategy: exception during
creation
akka.actor.ActorInitializationException: exception
during creation
at
akka.actor.ActorInitializationException$.apply(Actor.scala:218)
at
akka.actor.ActorCell.create(ActorCell.scala:578)
at
akka.actor.ActorCell.invokeAll$1(ActorCell.scala:425)
at
akka.actor.ActorCell.systemInvoke(ActorCell.scala:447)
at
akka.dispatch.Mailbox.processAllSystemMessages(Mailbox.scala:262)
at akka.dispatch.Mailbox.run(Mailbox.scala:218)
at
akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
at
scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at
scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at
scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at
scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
Caused by: java.lang.reflect.InvocationTargetException
at
sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native
Method)
at
sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:57)
at
sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at
java.lang.reflect.Constructor.newInstance(Constructor.java:526)
at
akka.util.Reflect$.instantiate(Reflect.scala:65)
at akka.actor.Props.newActor(Props.scala:337)
at
akka.actor.ActorCell.newActor(ActorCell.scala:534)
at
akka.actor.ActorCell.create(ActorCell.scala:560)
... 9 more
how can i say flink, that it should be wait for
loading dataset, and what say this exception?
best regards,
paul