Hi Max, thanks for your quick reply. I found the relevant code and commented it out for testing, seems to be working. Happily waiting for the fix. Thanks again.
Robert On Wed, Sep 30, 2015 at 1:42 PM, Maximilian Michels <m...@apache.org> wrote: > Hi Robert, > > This is a regression on the current master due to changes in the way > Flink calculates the memory and sets the maximum direct memory size. > We introduced these changes when we merged support for off-heap > memory. This is not a problem in the way Flink deals with managed > memory, just -XX:MaxDirectMemorySize is set too low. By default the > maximum direct memory is only used by the network stack. The network > library we use, allocates more direct memory than we expected. > > We'll push a fix to the master as soon as possible. Thank you for > reporting and thanks for your patience. > > Best regards, > Max > > On Wed, Sep 30, 2015 at 1:31 PM, Robert Schmidtke > <ro.schmid...@gmail.com> wrote: > > Hi everyone, > > > > I'm constantly running into OutOfMemoryErrors and for the life of me I > > cannot figure out what's wrong. Let me describe my setup. I'm running the > > current master branch of Flink on YARN (Hadoop 2.7.0). My job is an > > unfinished implementation of TPC-H Q2 > > ( > https://github.com/robert-schmidtke/flink-benchmarks/blob/master/xtreemfs-flink-benchmark/src/main/java/org/xtreemfs/flink/benchmark/TPCH2Benchmark.java > ), > > I run on 8 machines (1 for JM, the other 7 for TMs) with 64G of memory > per > > machine. This is what I believe to be the relevant section of my > > yarn_site.xml: > > > > > > <property> > > <name>yarn.nodemanager.resource.memory-mb</name> > > <value>57344</value> > > </property> > > <!-- > > <property> > > <name>yarn.scheduler.minimum-allocation-mb</name> > > <value>8192</value> > > </property> > > --> > > <property> > > <name>yarn.scheduler.maximum-allocation-mb</name> > > <value>55296</value> > > </property> > > > > <property> > > <name>yarn.nodemanager.vmem-check-enabled</name> > > <value>false</value> > > </property> > > > > > > And this is how I submit the job: > > > > > > $FLINK_HOME/bin/flink run -m yarn-cluster -yjm 16384 -ytm 32768 -yn 7 > ..... > > > > > > The TMs happily report: > > > > ..... > > 11:50:15,577 INFO org.apache.flink.yarn.appMaster.YarnTaskManagerRunner > > - JVM Options: > > 11:50:15,577 INFO org.apache.flink.yarn.appMaster.YarnTaskManagerRunner > > - -Xms24511m > > 11:50:15,577 INFO org.apache.flink.yarn.appMaster.YarnTaskManagerRunner > > - -Xmx24511m > > 11:50:15,577 INFO org.apache.flink.yarn.appMaster.YarnTaskManagerRunner > > - -XX:MaxDirectMemorySize=65m > > ..... > > > > > > I've tried various combinations of YARN and Flink options, to no avail. I > > always end up with the following stacktrace: > > > > > > > org.apache.flink.runtime.io.network.netty.exception.LocalTransportException: > > java.lang.OutOfMemoryError: Direct buffer memory > > at > > > org.apache.flink.runtime.io.network.netty.PartitionRequestClientHandler.exceptionCaught(PartitionRequestClientHandler.java:153) > > at > > > io.netty.channel.AbstractChannelHandlerContext.invokeExceptionCaught(AbstractChannelHandlerContext.java:246) > > at > > > io.netty.channel.AbstractChannelHandlerContext.fireExceptionCaught(AbstractChannelHandlerContext.java:224) > > at > > > io.netty.channel.ChannelInboundHandlerAdapter.exceptionCaught(ChannelInboundHandlerAdapter.java:131) > > at > > > io.netty.channel.AbstractChannelHandlerContext.invokeExceptionCaught(AbstractChannelHandlerContext.java:246) > > at > > > io.netty.channel.AbstractChannelHandlerContext.fireExceptionCaught(AbstractChannelHandlerContext.java:224) > > at > > > io.netty.channel.ChannelInboundHandlerAdapter.exceptionCaught(ChannelInboundHandlerAdapter.java:131) > > at > > > io.netty.channel.AbstractChannelHandlerContext.invokeExceptionCaught(AbstractChannelHandlerContext.java:246) > > at > > > io.netty.channel.AbstractChannelHandlerContext.notifyHandlerException(AbstractChannelHandlerContext.java:737) > > at > > > io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:310) > > at > > > io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294) > > at > > > io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846) > > at > > > io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131) > > at > > > io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511) > > at > > > io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468) > > at > > > io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382) > > at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354) > > at > > > io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:112) > > at java.lang.Thread.run(Thread.java:745) > > Caused by: io.netty.handler.codec.DecoderException: > > java.lang.OutOfMemoryError: Direct buffer memory > > at > > > io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:234) > > at > > > io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308) > > ... 9 more > > Caused by: java.lang.OutOfMemoryError: Direct buffer memory > > at java.nio.Bits.reserveMemory(Bits.java:658) > > at java.nio.DirectByteBuffer.<init>(DirectByteBuffer.java:123) > > at java.nio.ByteBuffer.allocateDirect(ByteBuffer.java:306) > > at > > > io.netty.buffer.UnpooledUnsafeDirectByteBuf.allocateDirect(UnpooledUnsafeDirectByteBuf.java:108) > > at > > > io.netty.buffer.UnpooledUnsafeDirectByteBuf.capacity(UnpooledUnsafeDirectByteBuf.java:157) > > at > io.netty.buffer.AbstractByteBuf.ensureWritable(AbstractByteBuf.java:251) > > at io.netty.buffer.AbstractByteBuf.writeBytes(AbstractByteBuf.java:849) > > at io.netty.buffer.AbstractByteBuf.writeBytes(AbstractByteBuf.java:841) > > at io.netty.buffer.AbstractByteBuf.writeBytes(AbstractByteBuf.java:831) > > at > > > io.netty.handler.codec.ByteToMessageDecoder$1.cumulate(ByteToMessageDecoder.java:92) > > at > > > io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:228) > > ... 10 more > > > > > > I always figured that running into OOMEs with Flink would be quite hard > to > > achieve, however I'm wondering what's going wrong now. Seems to be > related > > to the Direct Memory? Why are you limiting it in the JVM options at all? > Is > > there a special place where I can safely increase the size / remove the > > option altogether for unboundedness? > > > > A note on the data sizes, I used a scaling factor 1000 for the dbgen > command > > of TPC-H, which effectively means the following. Each table is split in 7 > > chunks (one local to each TM), each chunk of the part.tbl is 734M, each > > chunk of supplier.tbl is 43M, each chunk of partsupp.tbl is 3.6G. These > are > > not excessive amounts of data, however the query (at least my > > implementation) involves joins (the one in line 249 causing the OOME) and > > maybe there are some network issues? > > > > Maybe you can point me into the right direction, thanks a bunch. Cheers. > > > > Robert > -- My GPG Key ID: 336E2680