Hi Ovidiu, this option won't fix the problem if your system doesn't have enough memory :) It only defines whether the solution set is kept in managed memory or not. For more iteration configuration options, take a look at the Gelly documentation [1].
-Vasia. [1]: https://ci.apache.org/projects/flink/flink-docs-master/apis/batch/libs/gelly.html#configuring-a-scatter-gather-iteration On 14 March 2016 at 17:55, Ovidiu-Cristian MARCU < ovidiu-cristian.ma...@inria.fr> wrote: > Thank you for this alternative. > I don’t understand how the workaround will fix this on systems with > limited memory and maybe larger graph. > > Running Connected Components on the same graph gives the same problem. > > IterationHead(Unnamed Delta Iteration)(82/88) switched to FAILED > java.lang.RuntimeException: Memory ran out. Compaction failed. > numPartitions: 32 minPartition: 31 maxPartition: 32 number of overflow > segments: 417 bucketSize: 827 Overall memory: 149159936 Partition memory: > 65601536 Message: Index: 32, Size: 31 > at > org.apache.flink.runtime.operators.hash.CompactingHashTable.insertRecordIntoPartition(CompactingHashTable.java:469) > at > org.apache.flink.runtime.operators.hash.CompactingHashTable.insertOrReplaceRecord(CompactingHashTable.java:414) > at > org.apache.flink.runtime.operators.hash.CompactingHashTable.buildTableWithUniqueKey(CompactingHashTable.java:325) > at > org.apache.flink.runtime.iterative.task.IterationHeadTask.readInitialSolutionSet(IterationHeadTask.java:212) > at > org.apache.flink.runtime.iterative.task.IterationHeadTask.run(IterationHeadTask.java:273) > at > org.apache.flink.runtime.operators.BatchTask.invoke(BatchTask.java:354) > at org.apache.flink.runtime.taskmanager.Task.run(Task.java:584) > at java.lang.Thread.run(Thread.java:745) > > Best, > Ovidiu > > On 14 Mar 2016, at 17:36, Martin Junghanns <m.jungha...@mailbox.org> > wrote: > > Hi > > I think this is the same issue we had before on the list [1]. Stephan > recommended the following workaround: > > A possible workaround is to use the option "setSolutionSetUnmanaged(true)" > on the iteration. That will eliminate the fragmentation issue, at least. > > > Unfortunately, you cannot set this when using graph.run(new PageRank(...)) > > I created a Gist which shows you how to set this using PageRank > > https://gist.github.com/s1ck/801a8ef97ce374b358df > > Please let us know if it worked out for you. > > Cheers, > Martin > > [1] > http://mail-archives.apache.org/mod_mbox/flink-user/201508.mbox/%3CCAELUF_ByPAB%2BPXWLemPzRH%3D-awATeSz4sGz4v9TmnvFku3%3Dx3A%40mail.gmail.com%3E > > On 14.03.2016 16:55, Ovidiu-Cristian MARCU wrote: > > Hi, > > While running PageRank on a synthetic graph I run into this problem: > Any advice on how should I proceed to overcome this memory issue? > > IterationHead(Vertex-centric iteration > (org.apache.flink.graph.library.PageRank$VertexRankUpdater@7712cae0 | > org.apache.flink.graph.library.PageRank$RankMesseng$ > java.lang.RuntimeException: Memory ran out. Compaction failed. > numPartitions: 32 minPartition: 24 maxPartition: 25 number of overflow > segments: 328 bucketSize: 638 Overall memory: 115539968 Partition memory: > 50659328 Message: Index: 25, Size: 24 > at > org.apache.flink.runtime.operators.hash.CompactingHashTable.insertRecordIntoPartition(CompactingHashTable.java:469) > at > org.apache.flink.runtime.operators.hash.CompactingHashTable.insertOrReplaceRecord(CompactingHashTable.java:414) > at > org.apache.flink.runtime.operators.hash.CompactingHashTable.buildTableWithUniqueKey(CompactingHashTable.java:325) > at > org.apache.flink.runtime.iterative.task.IterationHeadTask.readInitialSolutionSet(IterationHeadTask.java:212) > at > org.apache.flink.runtime.iterative.task.IterationHeadTask.run(IterationHeadTask.java:273) > at > org.apache.flink.runtime.operators.BatchTask.invoke(BatchTask.java:354) > at org.apache.flink.runtime.taskmanager.Task.run(Task.java:584) > at java.lang.Thread.run(Thread.java:745) > > Thanks! > > Best, > Ovidiu > > >