Hi meneldor, The main cause of the error is that there is a bug in `ctx.timer_service().current_watermark()`. At the beginning the stream, when the first record come into the KeyedProcessFunction.process_element() , the current_watermark will be the Long.MIN_VALUE at Java side, while at the Python side, it becomes LONG.MAX_VALUE which is 9223372036854775807.
>>> ctx.timer_service().register_event_time_timer(current_watermark + 1500) Here, 9223372036854775807 + 1500 is 9223372036854777307 which will be automatically converted to a long interger in python but will cause Long value overflow in Java when deserializing the registered timer value. I will craete a issue to fix the bug. Let’s return to your initial question, at PyFlink you could create a Row Type data as bellow: >>> row_data = Row(id=‘my id’, data=’some data’, timestamp=1111) And I wonder which release version of flink the code snippet you provided based on? The latest API for KeyedProcessFunction.process_element() and KeyedProcessFunction.on_timer() will not provid a `collector` to collect output data but use `yield` which is a more pythonic approach. Please refer to the following code: def keyed_process_function_example(): env = StreamExecutionEnvironment.get_execution_environment() env.set_parallelism(1) env.get_config().set_auto_watermark_interval(2000) env.set_stream_time_characteristic(TimeCharacteristic.EventTime) data_stream = env.from_collection([(1, 'hello', '1603708211000'), (2, 'hi', '1603708224000'), (3, 'hello', '1603708226000'), (4, 'hi', '1603708289000')], type_info=Types.ROW([Types.INT(), Types.STRING(), Types.STRING()])) class MyTimestampAssigner(TimestampAssigner): def extract_timestamp(self, value, record_timestamp) -> int: return int(value[2]) class MyProcessFunction(KeyedProcessFunction): def process_element(self, value, ctx: 'KeyedProcessFunction.Context'): yield Row(id=ctx.get_current_key()[1], data='some_string', timestamp=11111111) # current_watermark = ctx.timer_service().current_watermark() ctx.timer_service().register_event_time_timer(ctx.timestamp() + 1500) def on_timer(self, timestamp: int, ctx: 'KeyedProcessFunction.OnTimerContext'): yield Row(id=ctx.get_current_key()[1], data='current on timer timestamp: ' + str(timestamp), timestamp=timestamp) output_type_info = Types.ROW_NAMED(['id', 'data', 'timestamp'], [Types.STRING(), Types.STRING(), Types.INT()]) watermark_strategy = WatermarkStrategy.for_monotonous_timestamps() \ .with_timestamp_assigner(MyTimestampAssigner()) data_stream.assign_timestamps_and_watermarks(watermark_strategy) \ .key_by(lambda x: (x[0], x[1]), key_type_info=Types.TUPLE([Types.INT(), Types.STRING()])) \ .process(MyProcessFunction(), output_type=output_type_info).print() env.execute('test keyed process function') Best, Shuiqiang meneldor <menel...@gmail.com> 于2021年1月14日周四 下午10:45写道: > Hello, > > What is the correct way to use Python dict's as ROW type in pyflink? Im > trying this: > > output_type_info = Types.ROW_NAMED(['id', 'data', 'timestamp' ], > [Types.STRING(), Types.STRING(), > Types.LONG() ]) > > class MyProcessFunction(KeyedProcessFunction): > def process_element(self, value, ctx: 'KeyedProcessFunction.Context', > out: Collector): > result = {"id": ctx.get_current_key()[0], "data": "some_string", > "timestamp": 111111111111} > out.collect(result) > current_watermark = ctx.timer_service().current_watermark() > ctx.timer_service().register_event_time_timer(current_watermark + > 1500) > > def on_timer(self, timestamp, ctx: 'KeyedProcessFunction.OnTimerContext', > out: 'Collector'): > logging.info(timestamp) > out.collect("On timer timestamp: " + str(timestamp)) > > ds.key_by(MyKeySelector(), key_type_info=Types.TUPLE([Types.STRING(), > Types.STRING()])) \ > .process(MyProcessFunction(), output_type=output_type_info) > > > I just hardcoded the values in MyProcessFunction to be sure that the input > data doesnt mess the fields. So the data is correct but PyFlink trews an > exception: > > at java.io.DataInputStream.readUnsignedByte(DataInputStream.java:290) >> at >> org.apache.flink.api.java.typeutils.runtime.MaskUtils.readIntoMask(MaskUtils.java:73) >> at >> org.apache.flink.api.java.typeutils.runtime.RowSerializer.deserialize(RowSerializer.java:202) >> at >> org.apache.flink.api.java.typeutils.runtime.RowSerializer.deserialize(RowSerializer.java:58) >> at >> org.apache.flink.api.java.typeutils.runtime.RowSerializer.deserialize(RowSerializer.java:213) >> at >> org.apache.flink.api.java.typeutils.runtime.RowSerializer.deserialize(RowSerializer.java:58) >> at >> org.apache.flink.streaming.api.operators.python.PythonKeyedProcessOperator.emitResult(PythonKeyedProcessOperator.java:253) >> at >> org.apache.flink.streaming.api.operators.python.AbstractPythonFunctionOperator.emitResults(AbstractPythonFunctionOperator.java:266) >> at >> org.apache.flink.streaming.api.operators.python.AbstractPythonFunctionOperator.invokeFinishBundle(AbstractPythonFunctionOperator.java:293) >> at >> org.apache.flink.streaming.api.operators.python.AbstractPythonFunctionOperator.checkInvokeFinishBundleByTime(AbstractPythonFunctionOperator.java:285) >> at >> org.apache.flink.streaming.api.operators.python.AbstractPythonFunctionOperator.lambda$open$0(AbstractPythonFunctionOperator.java:134) >> at >> org.apache.flink.streaming.runtime.tasks.StreamTask.invokeProcessingTimeCallback(StreamTask.java:1211) >> ... 10 more > > However it works with primitive types like Types.STRING(). According to the > documentation the ROW type corresponds to the python's dict type. > > > Regards > >